Advertisement

Paleontological Journal

, Volume 52, Issue 10, pp 1204–1216 | Cite as

Gamma-IR Resistance of Bacteria in Soil and Permafrost

  • E. A. VorobyovaEmail author
  • V. S. Cheptsov
  • G. A. Osipov
  • O. R. Kotsyurbenko
  • V. S. Soina
Article

Abstract

Ionizing radiation is among the most important planetary factors that regulate the intensity and dynamics of biospheric processes. At the early stages of life on the Earth, short-wave radiation permeated the Earth surface. The evolution of the planet, corrected by fluctuations of cosmophysical factors, contributed to the development of the adaptation processes in the emerging biosystems, including resistance to a wide range of ionizing effects. Studies of microorganisms from extreme habitats have changed the scientific paradigm of cell viability and adaptive potential. The taxonomic spectrum of bacteria and archaea, isolated from extreme biotopes and resistant to ionizing radiation, is constantly enlarged. However, it is also necessary to develop in situ studies at the system level, as well as to assess the ecosystem stability and prospects for its restoration as the basic unit of the biosphere during prolonged exposure to radiation and accumulation of significant doses. The goal of this research was to study the effects of high doses (60‒250 kGy) of ionizing gamma radiation on the viability of bacterial communities in frozen sedimentary rocks and modern soils, as well as to assess the aftereffect of high doses on natural samples.

Keywords:

ionizing radiation natural habitats ancient ecosystems microorganisms radioresistance 

Notes

ACKNOWLEDGMENTS

This study was supported by the Program no. 17 of the Presidium of the Russian Academy of Sciences (Evolution of the Organic World and Planetary Processes, subprogram 1), by the Russian Science Foundation (project nos. 14-50-00029 (isolation of bacterial cultures, their cryopreservation, and storage) and 17-12-01184 (high-dose irradiation)), and by the Russian Foundation for Basic Research (project no. 16-34-01275 (molecular analysis of samples)).

REFERENCES

  1. 1.
    Allen, C.C., Albert, F.G., Combie, J., Banin, A., Yablekovitch, Y., Kan Ido, Bodnar, R.J., Hamilton, V.E., Jolliff, B.L., Kuebler, K., Wang Alian, Lindstrom, D.J., Morris, P.A., Morris, R.V., Murray, R.W., Nyquist, L.E., et al., Effects of sterilizing doses of gamma radiation on Mars analog rocks and minerals, J. Geophys. Res., 1999, vol. 104, no. E11, pp. 27043–27066.CrossRefGoogle Scholar
  2. 2.
    Allwood, A.C., Geology: Evidence of life in Earth’s oldest rocks, Nature, 2016, vol. 537, no. 7621, pp. 500–501. doi 10.1038/nature19429CrossRefGoogle Scholar
  3. 3.
    Astrobiology: The Quest for the Conditions of Life, Horneck, G. and Baumstark-Khan, Ch., Eds., Berlin: Springer, 2002.Google Scholar
  4. 4.
    Bagwell, C.E., Hixson, K.K., Milliken, C.E., López-Ferrer, D., and Weitz, K.K., Proteomic and physiological responses of Kineococcus radiotolerans to copper, PLoS ONE, 2010, vol. 5, no. 8, p. e12427. doi 10.1371/journal.pone.0012427CrossRefGoogle Scholar
  5. 5.
    Bassam, B.J., Caetano-Anollés, G., and Gresshoff, P.M., Fast and sensitive silver staining of DNA in polyacrylamide gels, Anal. Biochem., 1991, vol. 196, no. 1, pp. 80–83.CrossRefGoogle Scholar
  6. 6.
    Battista, J. R. and Rainey, F.A., Order 1. Deinococcales Rainey, Nobre, Schumann, Stackebrandt, and da Costa 1997, 513VP, in Bergey’s Manual of Systematic Bacteriology, Boone, D., Castenholz, R., and Garrity, G., Eds., New York, N.Y.: Springer, 2001, vol. 1, pp. 395–403.Google Scholar
  7. 7.
    Beblo-Vranesevic, K., Koschnitzki, D., and Rettberg, P., Ignicoccus hospitalis: a polyextremophilic microorganism with unusual high radiation tolerance, Conference: DGDR, 2016. 12–16. September 2016, Essen, Germany.Google Scholar
  8. 8.
    Brown, A.R., Wincott, P.L., LaVerne, J.A., Small, J.S., Vaughan, D.J., Pimblott, S.M., and Lloyd, J.R., The impact of γ radiation on the bioavailability of Fe(III) minerals for microbial respiration, Environ. Sci. Technol., 2014, vol. 48, no. 18, pp. 10672–10680. doi 10.1021/es503249rCrossRefGoogle Scholar
  9. 9.
    Brown, A.R., Boothman, Ch., Pimblott, S.M., and Lloyd, J.R., The impact of gamma radiation on sediment microbial processes, Appl. Environ. Microbiol., 2015, vol. 81, no. 12, pp. 4014–4025.CrossRefGoogle Scholar
  10. 10.
    Daly, M.J., Gaidamakova, E.K., Matrosova, V.Y., Vasilenko, A., Zhai, M., Leapman, R.D., Lai, B., Ravel, B., Li Shu-Mei W., Kemner, K.M., and Fredrickson, J.K., Protein oxidation implicated as the primary determinant of bacterial radioresistance, PLoS Biol., 2007, vol. 5, no. 4, pp. 0001–0011.Google Scholar
  11. 11.
    Dartnell, L.R., Hunter, S.J., Lovell, K.V., Coates, A.J., and Ward, J.M., Low-temperature ionizing radiation resistance of Deinococcus radiodurans and Antarctic Dry Valley bacteria, Astrobiology, 2010, vol. 10, no. 7, pp. 717–732.CrossRefGoogle Scholar
  12. 12.
    Deering, R.A., Dictyostelium discoideum: a gamma-ray resistant organism, Science, 1968, vol. 162, no. 3859, pp. 1289–1290.CrossRefGoogle Scholar
  13. 13.
    DiRuggiero, J., Santangelo, N., Nackerdien, Z., Ravel J., and Robb, F.T., Repair of extensive ionizing-radiation DNA damage at 95 degrees C in the hyperthermophilic archaeon Pyrococcus furiosus, J. Bacteriol., 1997, vol. 179, no. 14, pp. 4643–4645.CrossRefGoogle Scholar
  14. 14.
    Ferreira, A.C., Nobre, M.F., Moore, E., Rainey, F.A., Battista, J.R., and da Costa, M.S., Characterization and radiation resistance of new isolates of Rubrobacter radiotolerans and Rubrobacter xylanophilus, Extremophiles, 1999, vol. 3, no. 4, pp. 235–238.CrossRefGoogle Scholar
  15. 15.
    Garland, J.L. and Mills, A.L., A community-level physiological approach for studying microbial communities, Beyond the Biomass: Compositional and Functional Analysis of Soil Microbial Communities, Ritz, K., Dighton, J., and Giller, K.E., Eds., Chichester, UK: John Wiley and Sons, 1994, pp. 77–83.Google Scholar
  16. 16.
    Georgiou, Ch.D. and Deamer, D.W., Lipids as universal biomarkers of extraterrestrial life, Astrobiology, 2014, vol. 14, no. 6, pp. 541–549. doi 10.1089/ast.2013.1134CrossRefGoogle Scholar
  17. 17.
    Geras’kin, A., Ecological effects of exposure to enhanced levels of ionizing radiation, J. Environ. Radioact., 2016 Oct;162-163:347-357. doi 10.1016/j.jenvrad.2016.06.012CrossRefGoogle Scholar
  18. 18.
    Giardino, G., Pillitteri, I., Favata, F., and Micela, G., The X-ray luminosity of solar-mass stars in the intermediate age open cluster NGC 752, Astron. Astrophys., 2008, vol. 490, no. 1, pp. 113–123.CrossRefGoogle Scholar
  19. 19.
    Gilichinsky, D., Vorobyova, E., Erokhina, L., Fyordorov-Davydov, D.G., and Chaikovskaya, N.R., Long-term preservation of microbial ecosystems in permafrost, Adv. Space Res., 1992, vol. 12, no. 4, pp. 255–263.CrossRefGoogle Scholar
  20. 20.
    Gorlenko, M.V. and Kozhevin, P.A., Mul’tisubstratnoe testirovanie prirodnykh mikrobnykh soobshchestv (Multisubstrate Testing of Natural Microbial Communities), Moscow: MAKS Press, 2005.Google Scholar
  21. 21.
    Grosch, E.G. and McLoughlin, N., Reassessing the biogenicity of Earth’s oldest trace fossil with implications for biosignatures in the search for early life, Proc. Natl. Acad. Sci. USA, 2014, vol. 111, no. 23, pp. 8380–8387.CrossRefGoogle Scholar
  22. 22.
    Jolivet, E., Matsunaga Fujihiko, Ishino Yoshizumi, Forterre,P., Prieur, D., and Myllykallio, H., Physiological responses of the hyperthermophilic archaeon “Pyrococcus abyssi” to DNA damage caused by ionizing radiation, J. Bacteriol., 2003, vol. 185, no. 13, pp. 3958–3961.CrossRefGoogle Scholar
  23. 23.
    Karasevich, Yu.N., Eksperimental’naya adaptatsiya mikroorganizmov (Experimental Adaptation of Microorganisms), Moscow: Nauka, 1975.Google Scholar
  24. 24.
    Kopylov, V.M., Bonch-Osmolovskaya, E.A., Svetlichnyi, V.A., Miroshnicheko, M.L., and Skobin, V.S., Gamma-irradiation resistance and UV sensitivity of extremely thermophilic archaebacteria and eubacteria, Mikrobiologiya, 1993, vol. 62, pp. 90–95.Google Scholar
  25. 25.
    Kudryashov, Yu.B., Radiatsionnaya biofizika (ioniziruyushchie izlucheniya) (Radiation Biophysics: Ionizing Radiation), Moscow: Fizmatlit, 2004.Google Scholar
  26. 26.
    Mattimore, V. and Battista, J.R., Radioresistance of Deinococcus radiodurans: functions necessary to survive ionizing radiation are also necessary to survive prolonged desiccation, J. Bacteriol., 1996, vol. 178, no. 3, pp. 633–637.CrossRefGoogle Scholar
  27. 27.
    McLaren, A.D., Radiation as a technique in soil biology and biochemistry, Soil Biol. Biochem., 1969, vol. 1, no. 1, pp. 63–73.CrossRefGoogle Scholar
  28. 28.
    McNamara, N.P., Black, H.I.J., Beresford, N.A., and Parekh, N.R., Effects of acute gamma irradiation on chemical, physical and biological properties of soils, Appl. Soil. Ecol., 2003, vol. 24, no. 2, pp. 117–132. doi 10.1016/S0929-1393(03)00073-8CrossRefGoogle Scholar
  29. 29.
    Noffke, N., Christian, D., Wacey, D., and Hazen, R.M., Microbially induced sedimentary structures recording an ancient ecosystem in the ca. 3.48 billion-year-old Dresser Formation, Pilbara, Western Australia, Astrobiology, 2013, vol. 13, no. 12, pp. 1–22. doi 10.1089/ast.2013.1030CrossRefGoogle Scholar
  30. 30.
    Nutman, A.P., Bennett, V.C., Friend, C.R.L., Kranendonk, M.J., and Chivas, A.R., Rapid emergence of life shown by discovery of 3,700-million-year-old microbial structures, Nature, 2016, vol. 537, no. 7621, pp. 535–538. doi 10.1038/nature19355CrossRefGoogle Scholar
  31. 31.
    Obridko, V.N., Ragulskaya, M.V., Khabarova, O.V., Miroshnichenko, L.I., and Khramova, E.G., Cosmophysical factors of evolution of biosphere: new lines of research, Psychosom. Integr. Res. (Saratov), 2015, vol. 1, no. 1, p. 0101.Google Scholar
  32. 32.
    Osipov, G.À. and Turova, E.S., Studying species composition of microbial communities with the use of gas chromatography–mass spectrometry: microbial community of caolin, FEMS Microbiol. Rev., 1997, vol. 20, nos. 3–4, pp. 437–446.CrossRefGoogle Scholar
  33. 33.
    Parenteau, M.N. Jahnke, L.L., Farmer, J.D., and Cady, S.L., Production and early preservation of lipid biomarkers in iron hot springs, Astrobiology, 2014, vol. 14, no. 6, pp. 502–521. doi 10.1089/ast.2013.1122CrossRefGoogle Scholar
  34. 34.
    Phillips, R.W., Wiegel, J., Berry, C.J., Fliermans, C., Peacock, A.D., White, D.C., and Shimkets, L.J., Kineococcus radiotolerans sp. nov., a radiation resistant gram-positive bacterium, Int. J. Syst. Evol. Microbiol., 2002, vol. 52, part 3, pp. 933–938.Google Scholar
  35. 35.
    Problemy zarozhdeniya i evolyutsii biosfery (Problems of the Origin and Evolution of the Biosphere), Galimov, E.M., Ed., Moscow: URSS, 2008.Google Scholar
  36. 36.
    Rainey, F.A., Ray, K., Ferreira, M., Gatz, B.Z., Nobre, M.F., Bagaley, D., Rash, B.A., Park, M.-J., Earl, A.M., Shank, N.C., Small, A.M., Henk, M.C., Battista, J.R., Kämpfer, P., and da Costa, M.S., Extensive diversity of ionizing-radiation-resistant bacteria recovered from Sonoran Desert soil and description of nine new species of the genus Deinococcus obtained from a single soil sample, Appl. Environ. Microbiol., 2005, vol. 71, no. 9, pp. 5225–5235. doi 10.1128/AEM.71.9.5225–5235.2005CrossRefGoogle Scholar
  37. 37.
    Romanovskaya, V.A., Stolyar, S.M., Malashenko, Yu.R., and Shatokhina, E.S., The effect of long-term radiation on the diversity of heterotrophic bacteria in the soils within the 10-km zone of the Chernobyl NPP, Mikrobiol. Zh., 1996, vol. 58, no. 5, pp. 3–11.Google Scholar
  38. 38.
    Schwieger, F. and Tebbe, C.C., A new approach to utilize PCR single-strand-conformation polymorphism for 16S rRNA gene-based microbial community analysis, Appl. Environ. Microbiol., 1998, vol. 64, no. 12, pp. 4870–4876.Google Scholar
  39. 39.
    Sghaier, H., DNA repair: lessons from the evolution of ionizing-radiation-resistant prokaryotes—Fact and Theory, Selected Topics in DNA Repair, Chen C.C., Ed., San Diego, CA: Univ. of California, InTech, 2011, ch. 7, pp. 145–156. doi 10.5772/22312Google Scholar
  40. 40.
    Sghaier, H., Narumi, I., Satoh, K., Ohba, H., and Mitomo, H., Problems with the current deinococcal hypothesis: an alternative theory, Theory Biosci., 2007, vol. 126, no. 1, pp. 43–45. doi 10.1007/s12064-007-0004-xCrossRefGoogle Scholar
  41. 41.
    Shekhovtsova, N.V., Osipov, G.A., Verkhovtseva, N.V., and Pevzner, L.A., Analysis of lipid biomarkers in rocks of the Archean crystalline basement, Proc. SPIE—Int. Soc. Opt. Eng., 2003, vol. 4939, pp. 160–168.Google Scholar
  42. 42.
    Shi, T., Reeves, R.H., Gilichinsky, D.A., and Friedmann, E.I., Characterization of viable bacteria from Siberian permafrost by 16S rDNA sequencing, Microb. Ecol., 1997, vol. 33, no. 3, pp. 169–179.CrossRefGoogle Scholar
  43. 43.
    Soina, V.S. and Vorobyova, E.A., Adaptation of bacteria to the terrestrial permafrost environment: a biomodel for astrobiology, Origins: Genesis, Evolution and Biodiversity of Life, Seckbach, J., Ed., Dordrecht, Netherlands: Kluver Academic Publ., 2004, pp. 427–444.Google Scholar
  44. 44.
    Stahl, D.A. and Amann, R., Development and application of nucleic acid probes, in Nucleic Acid Techniques in Bacterial Systematic, Stackebrandt, E. and Goodfellow, M., Eds., Chichester, UK: John Wiley and Sons, 1991.Google Scholar
  45. 45.
    Suzuki Kenichiro, Collins, M.D., Iijima Eriko, and Komagata Kazuo, Chemotaxonomic characterization of a radiotolerant bacterium, Arthrobacter radiotolerans: description of Rubrobacter radiotolerans gen. nov., comb. nov., FEMS Microbiol. Letts., 1988, vol. 52, nos. 1–2, pp. 33–39.CrossRefGoogle Scholar
  46. 46.
    Tanaka Masashi, Earl, A.M., Howell, H.A., Park, M.J., Eisen, J.A., Peterson, S.N., and Battista, J.R., Analysis of Deinococcus radiodurans’s transcriptional response to ionizing radiation and desiccation reveals novel proteins that contribute to extreme radioresistance, Genetics, 2004, vol. 168, no. 1, pp. 21–33.CrossRefGoogle Scholar
  47. 47.
    Tikhomirov, V.S., Deistvie ioniziruyushchikh izluchenii na ekologicheskie sistemy (Effects of Ionizing Radiation on Ecological Systems), Moscow: Atomizdat, 1978.Google Scholar
  48. 48.
    Vorobyova, E., Soina, V., Gorlenko, M., Minkovskaya, N., Zalinova, N., Mamukelashvili, A., Gilichinsky, D., Rivkina, E., and Vishnivetskaya, T., The deep cold biosphere: facts and hypothesis, FEMS Microbiol. Rev., 1997, vol. 20, nos. 3–4, pp. 277–290.CrossRefGoogle Scholar
  49. 49.
    Vorobyova, E.A., Minkovsky, N., Mamukelashvili, A., Zvyagintsev, D., Soina, V., Polanskaya, L., and Gilichinsky, D., Microorganisms and biomarkers in permafrost, Permafrost Response on Economic Development, Environmental Security, and Natural Resources, Paepe, R. and Melnikov, V., Eds., NATO ASI Series: Environmental Security, 2/76, Dordrecht, Netherlands: Kluwer Acad. Publ., 2001, pp. 527–541.Google Scholar
  50. 50.
    Vorobyova, E.A., Soina, V.S., Mamukelashvili, A.G., Bolshakova, A.V., Yaminsky, I.V., and Mulyukin, A.L., Living cells in permafrost as models for astrobiology research, Life in Ancient Ice, Castello, J.D. and Rogers, S.O., Eds., Princeton, NJ: Princeton Univ. Press, 2005, ch. 19, pp. 277–288.Google Scholar
  51. 51.
    Yoshinaka Taeko, Yano Keiji, and Yamaguchi Hikoyuki, Isolation of a highly radioresistant bacterium Arthrobacter radiotolerans nov. sp., Agric. Biol. Chem., 1973, vol. 37, no. 10, pp. 2269–2275.CrossRefGoogle Scholar
  52. 52.
    Zahradka, K., Slade, D., Bailone, A., Sommer, S., Averbeck, D., Petranovic, M., Lindner, A.B., and Radman, M., Reassembly of shattered chromosomes in Deinococcus radiodurans, Nature, 2006, vol. 443, no. 7111, pp. 569–573. doi 10.1038/nature05160Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • E. A. Vorobyova
    • 1
    • 2
    • 5
    Email author
  • V. S. Cheptsov
    • 1
    • 2
    • 5
  • G. A. Osipov
    • 3
  • O. R. Kotsyurbenko
    • 1
    • 4
  • V. S. Soina
    • 1
  1. 1.Moscow State UniversityMoscowRussia
  2. 2.Space Research Institute, Russian Academy of SciencesMoscowRussia
  3. 3.International Analytical Center, Interlab, Zelinsky Institute of Organic ChemistryMoscowRussia
  4. 4.Yugra State UniversityKhanty-MansiyskRussia
  5. 5.Ioffe Physico-Technical Institute of the Russian Academy of SciencesSt. PetersburgRussia

Personalised recommendations