Advertisement

Paleontological Journal

, Volume 52, Issue 10, pp 1162–1171 | Cite as

Use of Morphology of Halophilic and Alkaliphilic Cyanobacteria as a Criterion for Detection of Soda Conditions in the Past

  • O. S. SamylinaEmail author
Article
  • 22 Downloads

Abstract

The modern soda lakes as relict biotopes, the analogs of which could be widespread in the Precambrian Era, are considered in the context of two hypotheses: “soda ocean” and “soda continent.” The diversity of modern halophilic and alkaliphilic cyanobacteria has been analyzed in order to reveal the morphological forms which have paleo-analogs that could be used as indicators of soda conditions in the Precambrian.

Keywords:

soda lakes “soda ocean,” “soda continent,” cyanobacteria Precambrian 

Notes

ACKNOWLEDGMENTS

The author is sincerely grateful to Kanapatsky T.A., B.Sc. Biology (Winogradsky Institute of Microbiology, Russian Academy of Sciences), for the samples of cyanobacterial communities from the rivers of the Lake Elton region provided for making photographs and to Sergeev V.N., D.Sc. Biology (Geological Institute, Russian Academy of Sciences), for the photographs of fossil cyanobacteria.

The work was partially supported by the Program of the Presidium of the Russian Academy of Sciences “Evolution of Organic World and Planetary Processes” (Subprogram II) and by the Russian Foundation for Basic Research (projects no. 17-04-00324, no. 16-04-00758).

REFERENCES

  1. 1.
    Andreote, A.P.D., Vaz, M.G.M.V., Genuário, D.B., Barbiero, L., Rezende-Filho, A.T., and Fiore, M.F., Nonheterocytous cyanobacteria from Brazilian saline-alkaline lakes, J. Phycol., 2014, vol. 50, no. 4, pp. 675–684.CrossRefGoogle Scholar
  2. 2.
    Astafieva, M.M., Prokaryotes in the Early Precambrian, Paleontol. J., 2013, vol. 47, no. 9, pp. 973–976.CrossRefGoogle Scholar
  3. 3.
    Astafieva, M.M., Gerasimenko, L.M., Geptner, A.L., Zhegallo, E.A., Zhmur, S.I., Karpov, G.A., Orleansky, V.K., Ponomarenko, A.G., Rozanov, A.Yu., Ushatinskaya, G.T., Hoover, R.B., and Shkolnik, E.L., Iskopaemye bakterii i drugie mikroorganizmy v zemnykh porodakh i astromaterialakh (Fossil Bacteria and Other Microorganisms in Terrestrial Rocks and Astromaterials), Rozanov, A.Yu. and Ushatinskaya, G.T., Eds., Moscow: Paleontol. Inst. Ross. Akad. Nauk, 2011.Google Scholar
  4. 4.
    Ballot, A., Dadheech, P.K., Haande, S., and Krienitz, L., Morphological and phylogenetic analysis of Anabaenopsis abijatae and Anabaenopsis elenkinii (Nostocales, Cyanobacteria) from tropical inland water bodies, Microb. Ecol., 2008, vol. 55, no. 4, pp. 608–618.CrossRefGoogle Scholar
  5. 5.
    Bolhuis, H., Severin, I., Confurius-Guns, V., Wollenzien, U.I.A., and Stal, L.J., Horizontal transfer of the nitrogen fixation gene cluster in the cyanobacterium Microcoleus chthonoplastes, ISME J., 2010, vol. 4, no. 1, pp. 121–130.CrossRefGoogle Scholar
  6. 6.
    Budinoff, C.R., Ecophysiology of a Mono Lake cyanobacterium, Master of Science thesis, 2005, p. 34. https://getd.libs.uga.edu/pdfs/budinoff_charles_r_200512_ ms.pdf.Google Scholar
  7. 7.
    Butterfield, N.J., Proterozoic photosynthesis—a critical review, Palaeontology, 2015, vol. 58, no. 6, pp. 953–972.CrossRefGoogle Scholar
  8. 8.
    Dadheech, K.P., Ballot, A., Casper, P., Kotut, K., Novelo, E., Lemma, B., Pröschold, T., and Krienitz, L., Phylogenetic relationship and divergence among planktonic strains of Arthrospira (Oscillatoriales, Cyanobacteria) of African, Asian and American origin deduced by 16S-23S ITS and phycocyanin operon sequences, Phycologia, 2010, vol. 49, no. 4, pp. 361–372.CrossRefGoogle Scholar
  9. 9.
    Dadheech, K.P., Mahmoud, H., Kotut, K., and Krienitz, L., Haloleptolyngbya alcalis gen. et sp. nov., a new filamentous cyanobacterium from the soda lake Nakuru, Kenya, Hydrobiologia, 2012, vol. 691, no. 1, pp. 269–283.CrossRefGoogle Scholar
  10. 10.
    Dadheech, P.K., Casamatta, D.A., Casper, P., and Krienitz, L., Phormidium etoshii sp. nov. (Oscillatoriales, Cyanobacteria) described from the Etosha Pan, Namibia, based on morphological, molecular and ecological features, J. Czech Phycol. Soc. (Fottea), 2013a, vol. 13, no. 2, pp. 235–244.Google Scholar
  11. 11.
    Dadheech, K.P., Glöckner, G., Casper, P., Kotut, K., Mazzoni, C.J., Mbedi, S., and Krienitz, L., Cyanobacterial diversity in the hot spring, pelagic and benthic habitats of a tropical soda lake, FEMS Microbiol. Ecol., 2013b, vol. 85, no. 2, pp. 389–401.CrossRefGoogle Scholar
  12. 12.
    Dubinin, A.V. and Gerasimenko, L.M., Dark anaerobic metabolism of halophilic cyanobacterium Microcoleus chthonoplastes, Mikrobiologiya, 1993, vol. 62, no. 4, pp. 639–645.Google Scholar
  13. 13.
    Dubinin, A.V., Gerasimenko, L.M., and Zavarzin, G.A., Nitrogen fixation by the cyanobacterium Microcoleus chthonoplastes from hypersaline lagoons of Lake Sivash, Mikrobiologiya, 1992, vol. 61, no. 5, pp. 852–857.Google Scholar
  14. 14.
    Dubinin, A.V., Gerasimenko, L.M., and Zavarzin, G.A., Ecophysiology and species diversity of cyanobacteria from Lake Magadi, Mikrobiologiya, 1995, vol. 64, no. 6, pp. 845–849.Google Scholar
  15. 15.
    Galat, D.L., Verdin, J.P., and Sims, L.L., Large-scale patterns of Nodularia spumigena blooms in Pyramid Lake, Nevada, determined from landsat imagery: 1972–1986, Hydrobiologia, 1990, vol. 197, no. 1, pp. 147–164.CrossRefGoogle Scholar
  16. 16.
    García-Pichel, F., Nübel, U., and Muyzer, G., The phylogeny of unicellular, extremely halotolerant cyanobacteria, Arch. Microbiol., 1998, vol. 169, no. 6, pp. 469–482.CrossRefGoogle Scholar
  17. 17.
    Gerasimenko, L.M., Dubinin, A.V., and Zavarzin, G.A., Alkaliphilic cyanobacteria from soda lakes of Tuva and their ecophysiology, Microbiology, 1996, vol. 65, no. 6, pp. 736–740.Google Scholar
  18. 18.
    Golubic, S., Sergeev, V.N., and Knoll, A.H., Mesoproterozoic archaeoellipsoides akinetes of heterocystous cyanobacteria, Lethaia, 1995, vol. 28, pp. 285–298.CrossRefGoogle Scholar
  19. 19.
    Gorlenko, V.M., Buryukhaev, S.P., Matyugina, E.B., Borzenko, S.V., Namsaraev, Z.B., Bryantseva, I.A., Boldareva, E.N., Sorokin, D.Yu., and Namsaraev, B.B., Microbial communities of the stratified soda Lake Doroninskoe (Transbaikal Region), Microbiology, 2010, vol. 79, no. 3, pp. 390–401.CrossRefGoogle Scholar
  20. 20.
    Grim, S.L. and Dick, G.J., Photosynthetic versatility in the genome of Geitlerinema sp. PCC 9228 (formerly Oscillatoria limnetica “Solar Lake”), a model anoxygenic photosynthetic cyanobacterium, Front. Microbiol., 2016, vol. 7, art. 1546.CrossRefGoogle Scholar
  21. 21.
    Imhoff, J.F., Sahl, H.G., Soliman, G.S.H., and Trüper, H.G., The Wadi Natrun: Chemical composition and microbial mass developments in alkaline brines of eutrophic desert lakes, Geomicrobiol. J., 1979, vol. 1, no. 3, pp. 219–234.CrossRefGoogle Scholar
  22. 22.
    Kempe, S. and Degens, E.T., An early soda ocean?, Chem. Geol., 1985, vol. 53, nos. 1–2, pp. 95–108.CrossRefGoogle Scholar
  23. 23.
    Kempe, S. and Kazmierczak, J., Soda ocean hypothesis, Encyclopedia of Geobiology, Reitner J., and Thiel, V., Eds., Dordrecht: Springer-Verlag, 2011, pp. 829–833.Google Scholar
  24. 24.
    Kempe, S., Kazmierczak, J., and Degens, E.T., The soda ocean concept and its bearing on biotic and crustal evolution, Origin, Evolution and Modern Aspects of Biomineralization in Plants and Animals. Proceedings of the 5th International Symposium on Biomineralization, Arlington, Texas, May 18–23, 1986, Crick, R.E., Ed., New York: Plenum Press, 1989, pp. 29–43.Google Scholar
  25. 25.
    Komárek, J., Cyanoprokaryota. 3. Heterocytous genera, in Süßwasserflora von Mitteleuropa/Freshwater flora of Central Europe, Büdel, B., Gärtner, G., Krienitz, L., and Schagerl, M., Eds., Berlin: Heidelberg: Springer Spektrum, 2013.Google Scholar
  26. 26.
    Komárek, J. and Anagnostidis, K., Cyanoprokaryota 1. Chroococcales, in Süßwasserflora von Mitteleuropa 19/1, Ettl, H., Gärtner, G., Heynig, H., and Mollenhauer, D., Eds., Jena–Stuttgart–Lubeck–Ulm: Gustav Fischer, 1998.Google Scholar
  27. 27.
    Komárek, J. and Anagnostidis, K., Cyanoprokaryota. 2. Oscillatoriales, in Süßwasserflora von Mitteleuropa 19/2, Büdel, B., Krienitz, L., Gärtner, G., and Schagerl, M., Eds., Heidelberg: Elsevier/Spektrum, 2005.Google Scholar
  28. 28.
    Krienitz, L. and Kotut, F., Fluctuating algal food populations and the occurrence of lesser flamingos (Phoeniconaias minor) in the three Kenyan Rift Valley lakes, J. Phycol., 2010, vol. 46, no. 6, pp. 1088–1096.CrossRefGoogle Scholar
  29. 29.
    Krienitz, L. and Schagerl, M., Tiny and tough: microphytes of East African soda lakes, Soda Lakes of East Africa, Schagerl, M., Ed., Springer International Publishing Switzerland, 2016, pp. 149–177.Google Scholar
  30. 30.
    Mikhodyuk, O.S., Gerasimenko, L.M., Akimov, V.N., Ivanovsky, R.N., and Zavarzin, G.A., Ecophysiology and polymorphism of the unicellular extremely natronophilic cyanobacterium Euhalothece sp. z-m001 from Lake Magadi, Microbiology, 2008, vol. 77, no. 6, pp. 717–725.CrossRefGoogle Scholar
  31. 31.
    Samylina, O.S., Sapozhnikov, F.V., Gainanova, O.Yu., Ryabova, A.V., Nikitin, M.A., and Sorokin, D.Yu., Algo-bacterial communities of the Kulunda steppe (Altai Region, Russia) soda lakes, Microbiology, 2014, vol. 83, no. 6, pp. 849–860.CrossRefGoogle Scholar
  32. 32.
    Schopf, J.W., Microfossils of the Early Archean apex chert: new evidence of the antiquity of life, Science, New Ser., 1993, vol. 260, no. 5108, pp. 640–646.Google Scholar
  33. 33.
    Schopf, J.W., Solution to Darwin’s dilemma: discovery of the missing Precambrian record of life, Proc. Natl. Acad. Sci. U.S.A., 2000, vol. 97, no. 13, pp. 67947–6953.CrossRefGoogle Scholar
  34. 34.
    Schopf, J.W., Kudryavtsev, A.B., Agresti, D.G., Wdowiak, T.J., and Czaja, A.D., Laser-Raman imagery of Earth’s earliest fossils, Nature, 2002, vol. 416, pp. 73–76.CrossRefGoogle Scholar
  35. 35.
    Schopf, J.W., Sergeev, V.N., and Kudryavtsev, A.B., A new approach to ancient microorganisms: taxonomy, paleoecology, and biostratigraphy of the Lower Cambrian Berkuta and Chulaktau microbiotas of South Kazakhstan, J. Paleontol., 2015, vol. 89, no. 5, pp. 695–729.CrossRefGoogle Scholar
  36. 36.
    Sergeev, V.N., Gerasimenko, L.M., and Zavarzin, G.A., The Proterozoic history and present state of Cyanobacteria, Microbiology, 2002, vol. 71, no. 6, pp. 623–637.CrossRefGoogle Scholar
  37. 37.
    Sergeev, V.N. and Schopf, J.W., Taxonomy, paleoecology, and biostratigraphy of the late Neoproterozoic Chichkan microbiota of South Kazakhstan: the marine biosphere on the eve of metazoan radiation, J. Paleontol., 2010, vol. 84, no. 3, pp. 363–401.CrossRefGoogle Scholar
  38. 38.
    Sergeev, V.N., Sharma, M., and Shukla, Y., Proterozoic fossil cyanobacteria, The Palaeobotanist, 2012, vol. 61, pp. 189–358.Google Scholar
  39. 39.
    Sergeev, V.N., Knoll, A.H., Vorob’eva, N.G., and Sergeeva, N.D., Microfossils from the lower Mesoproterozoic Kaltasy Formation, East European Platform, Precambrian Res., 2016, vol. 278, pp. 87–107.CrossRefGoogle Scholar
  40. 40.
    Sharma, M. and Sergeev, V.N., Genesis of carbonate precipitate patterns and associated microfossils in Mesoproterozoic formations of India and Russia—a comparative study, Precambrian Res., 2004, vol. 134, pp. 317–347.CrossRefGoogle Scholar
  41. 41.
    Shirokova, L.S., Mavromatis, V., Bundeleva, I.A., Pokrovsky, O.S., Bénézeth, P., Gérard, E., Pearce, C.R., and Oelkers, E.H., Using Mg isotopes to trace cyanobacterially mediated magnesium carbonate precipitation in alkaline lakes, Aquat. Geochem., 2013, vol. 19, no. 1, pp. 1–24.CrossRefGoogle Scholar
  42. 42.
    Sili, C., Torzillo, G., and Vonshak, A., Arthrospira (Spirulina), in Ecology of Cyanobacteria II: Their Diversity in Space and Time, Whitton, B.A., Ed., Dordrecht: Springer Science+Business Media B.V., 2012, pp. 677–705.Google Scholar
  43. 43.
    Sorokin, D.Y., Berben, T., Melton, E.D., Overmars, L., Vavourakis, C.D., and Muyzer, G., Microbial diversity and biogeochemical cycling in soda lakes, Extremophiles, 2014, vol. 18, no. 5, pp. 791–809.CrossRefGoogle Scholar
  44. 44.
    Sorokin, D.Y., Abbas, B., Geleijnse, M., Pimenov, N.V., Sukhacheva, M.V., and van Loosdrecht, M.C.M., Methanogenesis at extremely haloalkaline conditions in the soda lakes of Kulunda Steppe (Altai, Russia), FEMS Microbiol. Ecol., 2015, vol. 91, no. 4, pp. 1–12.CrossRefGoogle Scholar
  45. 45.
    de Souza Santos, K.R. and Sant’anna, C.L., Cyanobacteria from different types of lakes (“salina,” “salitrada,” and “baía”) representative of the Pantanal da Nhecolândia, MS, Brazil, Rev. Bras. Bot., 2010, vol. 33, no. 1, pp. 61–83.Google Scholar
  46. 46.
    Stueken, E.E., Buick, R., and Schauer, A.J., Nitrogen isotope evidence for alkaline lakes on late Archean continents, Earth Planet. Sci. Lett., 2015, vol. 411, pp. 1–10.CrossRefGoogle Scholar
  47. 47.
    Vaz, M.G.M.V., Genuário, D.B., Andreote, A.P.D., Malone, C.F.S., Sant’Anna, C.L., Barbiero, L., and Fiore, M.F., Pantanalinema gen. nov. and Alkalinema gen. nov.: novel pseudanabaenacean genera (Cyanobacteria) isolated from saline-alkaline lakes, Int. J. Syst. Evol. Microbiol., 2015, vol. 65, pp. 298–308.CrossRefGoogle Scholar
  48. 48.
    Westall, F., Fossil bacteria, in Enigmatic Microorganisms and Life in Extreme Environments, Seckbach, J., Ed., Cellular Origin, Life in Extreme Habitats and Astrobiology, vol. 1, Dordrecht, The Netherlands: Kluwer Academic Publ., 1999, pp. 73–88.Google Scholar
  49. 49.
    Westall, F., Microbial palaeontology and the origin of life: a personal approach, Boll. della Soc. Paleontol. Ital., 2016, vol. 55, no. 2, pp. 85–103.Google Scholar
  50. 50.
    Westall, F. and Walsh, M.M., The diversity of fossil microorganisms in Archaean-age rocks, in Journey to Diverse Microbial Worlds: Adaptation to Exotic Environments, Seckbach, J., Ed., Cellular Origin, Life in Extreme Habitats and Astrobiology, vol. 2, Dordrecht, The Netherlands: Springer-Verlag, 2000, pp. 15–27.Google Scholar
  51. 51.
    Woronichin, N.N., Data for the study of algological flora in the Kulunda steppe lakes, Izv. Glavn. Botan. Sada SSSR, 1929, vol. 28, nos. 1–2, pp. 12–40.Google Scholar
  52. 52.
    Zavarzin, G.A., Epicontinental soda water bodies as supposed relic biotopes of terrestrial biota formation, Mikrobiologiya, 1993, vol. 62, no. 5, pp. 789–800.Google Scholar
  53. 53.
    Zavarzin, G.A., Development of soda environments as a global process, Alkalofil’nye mikrobnye soobshchestva (Alkaliphilic Microbial Communities), Galchenko, V.F., Ed., Tr. Inst. Mikrobiol. im. S.N. Vinogradskogo, vol. 14, Moscow: Nauka, 2007a, pp. 8–57.Google Scholar
  54. 54.
    Zavarzin, G.A., Alkalofil’nye mikrobnye soobshchestva (Alkaliphilic Microbial Communities), Galchenko, V.F., Ed., Tr. Inst. Mikrobiol. im. S.N. Vinogradskogo, vol. 14, Moscow: Nauka, 2007b, pp. 58–87.Google Scholar
  55. 55.
    Zavarzin, G.A., Ombrophiles as the first terrestrial inhabitants, Rannyaya kolonizatsiya sushi (Early Colonization of the Land), Rozhnov, S.V., Ed., Ser. “Geo-biologicheskie sistemy v proshlom,” Moscow: Paleontol. Inst. Ross. Akad. Nauk, 2012, pp. 4–28.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Winogradsky Institute of Microbiology, Federal Research Center “Fundamentals of Biotechnology,” Russian Academy of SciencesMoscowRussia
  2. 2.Borissiak Paleontological Institute, Russian Academy of SciencesMoscowRussia

Personalised recommendations