Paleontological Journal

, Volume 52, Issue 10, pp 1217–1223 | Cite as

Effect of Gamma Radiation on Viability of a Soil Microbial Community under Conditions of Mars

  • V. S. CheptsovEmail author
  • E. A. Vorobyova
  • M. V. Gorlenko
  • N. A. Manucharova
  • A. K. Pavlov
  • V. N. Lomasov


It is supposed that the biosphere could be formed under conditions of early Mars, and it is cryo-conserved up to now. The period of its preservation is limited by the effect of ionizing radiation. The viability of a soil microbial community thtat underwent gamma radiation (100 kGy) under simulated conditions (‒50°C, 1 Torr) of the surface layer of the Martian regolith is studied. Irradiation did not result in the death of the microbial community: the number of living cells, metabolic activity, and functional diversity remained high. The data obtained suggest that microorganisms could be preserved in regolith of Mars for no less than 1.3 m.y. and in general contribute to the modern concepts concerning radiation resistance of the Earth’s life form.


astrobiology Mars microorganisms gamma radiation soil 



This work was supported by the Russian Science Foundation, project no. 17-12-01184; Program of the Russian Academy of Sciences “Evolution of the Organic World and Planetary Processes” (subprogram 2) and the Russian Science Foundation, project no. 14-50-00029, as related to bacteria culture.


  1. 1.
    Atlas, R.M., Handbook of Microbiological Media, CRC Press, 2010.CrossRefGoogle Scholar
  2. 2.
    Battista, J.R., Earl, A.M., and Park, M.J., Why is Deinococcus radiodurans so resistant to ionizing radiation?, Trends Microbiol., 1999, vol. 7, no. 9, pp. 362–365.CrossRefGoogle Scholar
  3. 3.
    Bauermeister, A., Moeller, R., Reitz, G., et al., Effect of relative humidity on Deinococcus radiodurans resistance to prolonged desiccation, heat, ionizing, germicidal, and environmentally relevant UV radiation, Octolasion cyaneum, Microb. Ecol., 2011, vol. 61, no. 3, pp. 715–722.CrossRefGoogle Scholar
  4. 4.
    Baumstark-Khan, C. and Facius, R., Life under conditions of ionizing radiation, in Astrobiology: The Quest for the Conditions of Life Astrobiology, Horneck, G. and Baumstark-Khan, C., Eds., Berlin–Heidelberg: Springer, 2002, pp. 261–284.Google Scholar
  5. 5.
    Beaty, D.W., Clifford, S.M., Borg, L.E., et al., Key science questions from the second conference on early Mars: Geologic, hydrologic, and climatic evolution and the implications for life, Astrobiology, 2005, vol. 5, no. 6, pp. 663–689.CrossRefGoogle Scholar
  6. 6.
    Brown, K.A., Biochemical activities in peat sterilized by gamma-irradiation, Soil Biol. Biochem., 1981, vol. 13, no. 6, pp. 469–474.CrossRefGoogle Scholar
  7. 7.
    Carr, M.H., The Martian drainage system and the origin of valley networks and fretted channels, J. Geophys. Res. Planets, 1995, vol. 100, no. E4, pp. 7479–7507.CrossRefGoogle Scholar
  8. 8.
    Carr, M.H., Water on Mars, New York: Oxford Univ. Press, 1996.Google Scholar
  9. 9.
    Cox, M.M. and Battista, J.R., Deinococcus radiodurans—the consummate survivor, Nature Rev. Microbiol., 2005, vol. 3, no. 11, pp. 882–892.CrossRefGoogle Scholar
  10. 10.
    Dartnell, L.R., Hunter, S.J., Lovell, K.V., et al., Low-temperature ionizing radiation resistance of Deinococcus radiodurans and Antarctic Dry Valley bacteria, Astrobiology, 2010, vol. 10, no. 7, pp. 717–732.CrossRefGoogle Scholar
  11. 11.
    DiRuggiero, J., Wierzchos, J., Robinson, C.K., et al., Microbial colonisation of chasmoendolithic habitats in the hyper-arid zone of the Atacama Desert, Biogeosciences, 2013, vol. 10, no. 4, p. 2439.CrossRefGoogle Scholar
  12. 12.
    Dohm, J.M., Baker, V.R., Boynton, W.V., et al., GRS evidence and the possibility of paleooceans on Mars, Planet. Space Sci., 2009, vol. 57, no. 5, pp. 664–684.CrossRefGoogle Scholar
  13. 13.
    El Maarry, M.R., Dohm, J.M., Marzo, G.A., et al., Searching for evidence of hydrothermal activity at Apollinaris Mons, Mars, Icarus, 2012, vol. 217, no. 1, pp. 297–314.CrossRefGoogle Scholar
  14. 14.
    El-Registan, G.I., Mulyukin, A.L., Nikolaev, Y.A., et al., Adaptogenic functions of extracellular autoregulators of microorganisms, Microbiology, 2006, vol. 75, no. 4, pp. 380–389.CrossRefGoogle Scholar
  15. 15.
    El-Sayed, W.S. and Ghanem, S., Bacterial community structure change induced by gamma irradiation in hydrocarbon contaminated and uncontaminated soils revealed by PCR-denaturing gradient gel electrophoresis, Biotechnology, 2009, vol. 8, no. 1, pp. 78–85.CrossRefGoogle Scholar
  16. 16.
    Fairén, A.G., Davila, A.F., Lim, D., et al., Astrobiology through the ages of Mars: The study of terrestrial analogues to understand the habitability of Mars, Astrobiology, 2010, vol. 10, no. 8, pp. 821–843.CrossRefGoogle Scholar
  17. 17.
    Fassett, C.I. and Head, J.W., Valley network-fed, open-basin lakes on Mars: Distribution and implications for Noachian surface and subsurface hydrology, Icarus, 2008, vol. 198, no. 1, pp. 37–56.CrossRefGoogle Scholar
  18. 18.
    Ferreira, A.C., Nobre, M.F., Moore, E., et al., Characterization and radiation resistance of new isolates of Rubrobacter radiotolerans and Rubrobacter xylanophilus, Extremophiles, 1999, vol. 3, no. 4, pp. 235–238.CrossRefGoogle Scholar
  19. 19.
    Garland, J.L. and Mills, A.L., Classification and characterization of heterotrophic microbial communities on the basis of patterns of community-level sole-carbon-source utilization, Appl. Environ. Microbial., 1991, vol. 57, no. 8, pp. 2351–2359.Google Scholar
  20. 20.
    Garland, J.L. and Mills, A.L., A community-level physiological approach for studying microbial communities, in Beyond the Biomass: Compositional and Functional Analysis of Soil Microbial Communities, Ritz, K., Dighton, J., and Giller, K.E., Eds., John Wiley and Sons Ltd, 1994, pp. 77–83.Google Scholar
  21. 21.
    Gilichinsky, D.A., Wilson, G.S., Friedmann, E.I., et al., Microbial populations in Antarctic permafrost: Biodiversity, state, age, and implication for astrobiology, Astrobiology, 2007, vol. 7, no. 2, pp. 275–311.CrossRefGoogle Scholar
  22. 22.
    Gorlenko, M.V. and Kozhevin, P.A., Differentiation of soil microbial communities by multisubstrate testing, Microbiology, 1994, vol. 63, no. 2, pp. 158–161.Google Scholar
  23. 23.
    Gorlenko, M.V. and Kozhevin, P.A., Mul’tisubstratnoe testirovanie prirodnykh mikrobnykh soobshchestv (Multisubstrate Testing of Natural Microbial Communities), Moscow: MAKS Press, 2005.Google Scholar
  24. 24.
    Groemer, G., Soucek, A., Frischauf, N., et al., The MARS2013 Mars analog mission, Astrobiology, 2014, vol. 14, no. 5, pp. 360–376.CrossRefGoogle Scholar
  25. 25.
    Halliwell, B. and Gutteridge, J.M.C., Free Radicals in Biology and Medicine, Oxford Univ. Press, USA, 2015.CrossRefGoogle Scholar
  26. 26.
    Hassler, D.M., Zeitlin, C., Wimmer-Schweingruber, R.F., et al., Mars’ surface radiation environment measured with the Mars Science Laboratory’s Curiosity rover, Science, 2014, vol. 343, no. 6169, p. 1244797.CrossRefGoogle Scholar
  27. 27.
    Hynek, B.M., Beach, M., and Hoke, M.R.T., Updated global map of Martian valley networks and implications for climate and hydrologic processes, J. Geophys. Res. Planets, 2010, vol. 115, no. E9.Google Scholar
  28. 28.
    Impey, C. and Henry, H., Dreams of Other Worlds: The Amazing Story of Unmanned Space Exploration, Princeton Univ. Press, 2016.CrossRefGoogle Scholar
  29. 29.
    Irwin, R.P., Howard, A.D., Craddock, R.A., and Moore, J.M., An intense terminal epoch of widespread fluvial activity on early Mars: 2. Increased runoff and paleolake development, J. Geophys. Res. Planets, 2005, vol. 110, no. E12.Google Scholar
  30. 30.
    Ivanov, M.A., Hiesinger, H., Erkeling, G., and Reiss, D., Mud volcanism and morphology of impact craters in Utopia Planitia on Mars: Evidence for the ancient ocean, Icarus, 2014, vol. 228, pp. 121–140.CrossRefGoogle Scholar
  31. 31.
    Kryazhevskikh, N.A., Demkina, E.V., Loiko, N.G., et al., Comparison of the adaptive potential of the Arthrobacter oxydans and Acinetobacter lwoffii isolates from permafrost sedimentary rock and the analogous collection strains, Microbiology, 2013, vol. 82, no. 1, pp. 29–42.CrossRefGoogle Scholar
  32. 32.
    Manaeva, E.S., Lomovtseva, N.O., Kostina, N.V., et al., Biological activity of soils in the settlements of southern (Microtus rossiaemeridionalis) and bank (Clethrionomys glareolus) voles, Biol. Bull., 2014, vol. 41, no. 1, pp. 80–88.CrossRefGoogle Scholar
  33. 33.
    Manucharova, N.A., The microbial destruction of chitin, pectin, and cellulose in soils, Euras. Soil Sci., 2009, vol. 42, no. 13, p. 1526.CrossRefGoogle Scholar
  34. 34.
    Mattimore, V. and Battista, J.R., Radioresistance of Deinococcus radiodurans: Functions necessary to survive ionizing radiation are also necessary to survive prolonged desiccation, J. Bacterial., 1996, vol. 178, no. 3, pp. 633–637.CrossRefGoogle Scholar
  35. 35.
    McNamara, N.P., Black, H.I.J., Beresford, N.A., and Parekh, N.R., Effects of acute gamma irradiation on chemical, physical and biological properties of soils, App. Soil Ecol., 2003, vol. 24, no. 2, pp. 117–132.CrossRefGoogle Scholar
  36. 36.
    Mulyukin, A.L., Demkina, E.V., Kozlova, A.N., and Soina, V.S., Synthesis of anabiosis autoinducers by non-spore-forming bacteria as a mechanism regulating their activity in soil and subsoil sedimentary rocks, Microbiology, 2001, vol. 70, no. 5, pp. 535–541.CrossRefGoogle Scholar
  37. 37.
    Musilova, M., Wright, G., Ward, J.M., and Dartnell, L.R., Isolation of radiation-resistant bacteria from Mars analog Antarctic Dry Valleys by preselection, and the correlation between radiation and desiccation resistance, Astrobiology, 2015, vol. 15, no. 12, pp. 1076–1090.CrossRefGoogle Scholar
  38. 38.
    Osinski, G.R., Tornabene, L.L., Banerjee, N.R., et al., Impact-generated hydrothermal systems on Earth and Mars, Icarus, 2013, vol. 224, no. 2, pp. 347–363.CrossRefGoogle Scholar
  39. 39.
    Pacelli, C., Selbmann, L., Zucconi, L., et al., Survival, DNA integrity, and ultrastructural damage in Antarctic cryptoendolithic eukaryotic microorganisms exposed to ionizing radiation, Astrobiology, 2017, vol. 17, no. 2, pp. 126–135.CrossRefGoogle Scholar
  40. 40.
    Parro, V., de Diego-Castilla, G., Moreno-Paz, M., et al., A microbial oasis in the hypersaline Atacama subsurface discovered by a life detector chip: Implications for the search for life on Mars, Astrobiology, 2011, vol. 11, no. 10, pp. 969–996.CrossRefGoogle Scholar
  41. 41.
    Pavlov, A.K., Blinov, A.V., and Konstantinov, A.N., Sterilization of Martian surface by cosmic radiation, Planet. Space Sci., 2002, vol. 50, no. 7, pp. 669–673.CrossRefGoogle Scholar
  42. 42.
    Pavlov, A.K., Shelegedin, V.N., Vdovina, M.A., and Pavlov, A.A., Growth of microorganisms in Martian-like shallow subsurface conditions: Laboratory modelling, Int. J. Astrobiol., 2010, vol. 9, no. 01, pp. 51–58.CrossRefGoogle Scholar
  43. 43.
    Pitonzo, B.J., Amy, P.S., and Rudin, M., Effect of gamma radiation on native endolithic microorganisms from a radioactive waste deposit site, Radiat. Res., 1999a, vol. 152, no. 1, pp. 64–70.CrossRefGoogle Scholar
  44. 44.
    Pitonzo, B.J., Amy, P.S., and Rudin, M., Resuscitation of microorganisms after gamma irradiation, Radiat. Res., 1999b, vol. 152, no. 1, pp. 71–75.CrossRefGoogle Scholar
  45. 45.
    Rainey, F.A., Ray, K., Ferreira, M., et al., Extensive diversity of ionizing-radiation-resistant bacteria recovered from Sonoran Desert soil and description of nine new species of the genus Deinococcus obtained from a single soil sample, App. Environm. Microbiol., 2005, vol. 71, no. 9, pp. 5225–5235.CrossRefGoogle Scholar
  46. 46.
    Romanovskaya, V.A., Rokitko, P.V., Malashenko, I., et al., Sensitivity of soil bacteria isolated from the alienated zone around the chernobyl Nuclear Power Plant to various stress factors, Microbiology, 1999, vol. 68, no. 4, pp. 465–469.Google Scholar
  47. 47.
    Sheremata, T.W., Yong, R.N., and Guiot, S.R., Simulation and sterilization of a surrogate soil organic matter for the study of the fate of trichloroethylene in soil, Commun. Soil Sci, Plant Anal., 1997, vol. 28, nos. 13–14, pp. 1177–1190.CrossRefGoogle Scholar
  48. 48.
    Skyring, G.W. and Thompson, J.P., The availability of organic matter in dried and undried soil, estimated by an anaerobic respiration technique, Plant Soil, 1966, vol. 24, no. 2, pp. 289–298.CrossRefGoogle Scholar
  49. 49.
    Smith, H.D. and McKay, C.P., Drilling in ancient permafrost on Mars for evidence of a second genesis of life, Planet. Space Sci., 2005, vol. 53, no. 12, pp. 1302–1308.CrossRefGoogle Scholar
  50. 50.
    Stotzky, G. and Mortensen, J.L., Effect of gamma radiation on growth and metabolism of microorganisms in an organic soil, Soil Sci. Soc. Am. J., 1959, vol. 23, no. 2, pp. 125–127.CrossRefGoogle Scholar
  51. 51.
    Thompson, J.P., Soil sterilization methods to show VA‑mycorrhizae aid P and Zn nutrition of wheat in vertisols, Soil Biol. Biochem., 1990, vol. 22, no. 2, pp. 229–240.CrossRefGoogle Scholar
  52. 52.
    Verseux, C., Baqué, M., Cifariello, R., et al., Evaluation of the resistance of Chroococcidiopsis spp. to sparsely and densely ionizing irradiation, Astrobiology, 2017, vol. 17, no. 2, pp. 118–125.CrossRefGoogle Scholar
  53. 53.
    Vorobyova, E., Soina, V., Gorlenko, M., et al., The deep cold biosphere: Facts and hypothesis, FEMS Microbiol. Rev., 1997, vol. 20, nos. 3–4, pp. 277–290.CrossRefGoogle Scholar
  54. 54.
    Wassmann, M., Moeller, R., Reitz, G., and Rettberg, P., Adaptation of Bacillus subtilis cells to Archean-like UV climate: Relevant hints of microbial evolution to remarkably increased radiation resistance, Astrobiology, 2010, vol. 10, no. 6, pp. 605–615.CrossRefGoogle Scholar
  55. 55.
    Wierzchos, J., Rios, A., and Ascaso, C., Microorganisms in desert rocks: The edge of life on Earth, Int. Microbial., 2013, vol. 15, no. 4, pp. 172–182.Google Scholar
  56. 56.
    Yardin, M.R., Kennedy, I.R., and Thies, J.E., Development of high quality carrier materials for field delivery of key microorganisms used as bio-fertilisers and bio-pesticides, Rad. Phys Chem., 2000, vol. 57, no. 3, pp. 565–568.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • V. S. Cheptsov
    • 1
    • 2
  • E. A. Vorobyova
    • 1
    • 2
  • M. V. Gorlenko
    • 1
  • N. A. Manucharova
    • 1
  • A. K. Pavlov
    • 3
  • V. N. Lomasov
    • 4
  1. 1.Lomonosov Moscow State UniversityMoscowRussia
  2. 2.Space Research Institute, Russian Academy of SciencesMoscowRussia
  3. 3.Ioffe Physical-Technical Institute, Russian Academy of SciencesSt. PetersburgRussia
  4. 4.St. Petersburg Polytechnic UniversitySt. PetersburgRussia

Personalised recommendations