Paleontological Journal

, Volume 52, Issue 10, pp 1131–1147 | Cite as

Life in Ancient Cooling Lava

  • M. M. AstafievaEmail author


The study of volcanogenic and volcanogenic–sedimentary rocks (Early Proterozoic pillow lava of Karelia and South Africa), where diverse fossilized bacteria (prokaryotes) and probably even eukaryotes shows that, during this early period, conditions of cooling lava flows and igneous rocks were favorable for bacterial development and colonization.


bacteria microorganisms prokaryotes eukaryotes pillow lava Early Precambrian Proterozoic 



  1. 1.
    Altermann, W. and Kazmierczak, J., Archean microfossils: A reappraisal of early life on Earth, Res. Microbiol., 2003, vol. 154, pp. 611–617.CrossRefGoogle Scholar
  2. 2.
    Arabadzhi, M.S., V nedrakh golubogo kontinenta (In the Entrails of Blue Continent), Moscow: Nedra, 1988.Google Scholar
  3. 3.
    Astafieva, M.M., Framboidal structures of black shales (Cambrian Period of the Siberian Platform and Permian of the Barents Sea shelf), Paleontol. Zh., 2005a, no. 1, pp. 3–8.Google Scholar
  4. 4.
    Astafieva, M.M., Archean of Karelia and bacterial paleontology, in Evolyutsiya biosfery i bioraznoobraziya. K 70-letiyu A.Yu. Rozanova (Evolution of the Biosphere and Biodiversity, Devoted to the 70th Anniversary of A.Yu. Rozanov), Moscow: KMK. 2006a, pp. 120–128.Google Scholar
  5. 5.
    Astafieva, M.M., Hoover, R.B., Rozanov, A.Yu., and Vrevskiy, A.B., “Fossil microorganisms in Archaean”, Proc. SPIE, 2006b, vol. 6309, pp. 630904-1–630904-10.CrossRefGoogle Scholar
  6. 6.
    Astafieva, M.M., Rozanov, A.Yu., Cornell, D.H., and Hoover, R.B., Development of living organisms on the lava-water interface of Palaeoproterozoic Ongeluk lavas of South Africa, Proc. SPIE, 2008, vol. 7097, pp. 709703-1–709703-13.CrossRefGoogle Scholar
  7. 7.
    Astafieva, M.M., Rozanov, A.Yu., and Hoover, R.B., Framboids, their structure and origins, Paleontol. Zh., 2005b, no. 5, pp. 1–7.Google Scholar
  8. 8.
    Baross, J.A. and Deming, J.W., Growth of “black “smoker” bacteria at temperatures of at least 250°C, Nature, 1983, vol. 303, pp. 423–426.CrossRefGoogle Scholar
  9. 9.
    Boston, P.J., Spilde, M.N., Northup, D.E., et al., Cave biosignature suites: Microbes, minerals, and Mars, Astrobiology, 2001, vol. 1, pp. 25–55.CrossRefGoogle Scholar
  10. 10.
    Brasier, M.D., Green, O.R., Jephcoat, A.P., Kleppe, A.K., Kranendonk, M.J., Lindsay, J.F., Steele, A., and Grassineau, N.V., Questioning the evidence for Earth’s oldest fossils, Nature, 2002, vol. 416, pp. 76–81.CrossRefGoogle Scholar
  11. 11.
    Brasier, M., Green, O., Lindsay, J., and Steele, A., Earth’s oldest (approximately 3.5 Ga) fossils and the “Early Eden hypothesis”: questioning the evidence, Orig. Life Evol. Biosph. J. Int. Soc. Study Origin Life, 2004, vol. 34, no. 1, pp. 257–269.CrossRefGoogle Scholar
  12. 12.
    Cornell, D.H., Schütte, S.S., and Eglington, B.L., The Ongeluk basaltic andesite formation in Griqualand West, South Africa: Submarine alteration in a 2222 Ma Proterozoic sea, Precambr. Res., 1996, vol. 79, pp. 101–123.CrossRefGoogle Scholar
  13. 13.
    Devouagard, B., Posfai, M., Xin, Hua., Bazylinski, D.A., Frankel, R.B., and Busek, P.R., Magnetite from magnetotactic bacteria: Size distributions and twinning, Am. Mineral., 1998, vol. 83, pp. 1387–1398.CrossRefGoogle Scholar
  14. 14.
    Fisk, M.R., Storrie-Lombardi, M.C., Douglas, S., Popa, R., et al., Evidence of biological activity in Hawaiian subsurface basalts, Geochem. Geophys. Geosyst., 2003, vol. 4, p. 2003GC000387.Google Scholar
  15. 15.
    Fisk, M.R., Storrie-Lombardi, M.C., and Josef, J., The water-igneous rock interface: Potential microbial habitats on Mars, Proc. SPIE, 2006a, vol. 6309 (Technical Abstract Summary Digest, San-Diego Convention Center San-Diego, California USA, 13–17 August 2006: Instruments, Methods, and Missions for Astrobiology IX, SPIE 6309-3, p. 176.Google Scholar
  16. 16.
    Fisk, M.R., Storrie-Lombardi, M.C., and Josef, J.A., Aqueous biotic and abiotic alteration of silicate rock: Evaluation of landing sites on Mars for their potential of revealing evidence for life, Proc. SPIE, 2006b, vol. 6309 (Instruments, Methods, and Missions for Astrobiology IX, Hoover, R.B., Levin, G.V., and Rozanov, A.Yu., Eds.) pp. 630903-1–630903-9.Google Scholar
  17. 17.
    Friedmann, E.I. and Koriem, A.M., Life on Mars: How it disappeared (if it was ever there), Adv. Space Res., 1989, vol. 9, no. 6, pp. 167–172.CrossRefGoogle Scholar
  18. 18.
    Furnes, H., Banerjee, N.R., Muehlenbachs, K., Staudigel, H., and de Wit, M., Early life recorded in Archean pillow lavas, Science, 2004, vol. 304, pp. 578–581.CrossRefGoogle Scholar
  19. 19.
    Furnes, H., Banerjee, N.R., Staudigel, H., Muehlenbachs, K., McLoughlin, N., de Wit, M., and van Kranendonk, M., Comparing petrographic signatures of boialteration in Recent to Mesoarchean pillow lavas: Tracing subsurface life in oceanic igneous rocks, Precamb. Res., 2007, vol. 158, pp. 156–176.CrossRefGoogle Scholar
  20. 20.
    Gerasimenko, L.M. and Ushatinskaya, G.T., Cyanobacteria, cyanobacterial assemblages, mats, and biofilms, in Bakterial’naya paleontologiya (Bacterial Paleontology), Moscow: Paleontol. Inst. Ross. Akad. Nauk, 2002, pp. 36–46.Google Scholar
  21. 21.
    Gerasimenko, L.M. and Zavarzin, G.A., Relict cyanobacterial assemblages, in Problemy doantropogennoi evolyutsii biosfery (Problems of Pre-Anthropogene Evolution of the Biosphere), Moscow: Nauka, 1993, pp. 222–254.Google Scholar
  22. 22.
    Godovikov, A.A., Mineralogiya (Mineralogy), Moscow: Nedra, 1975.Google Scholar
  23. 23.
    Grobler, N.J. and Botha, B.J.V., Pillow-lavas and hyaloclastite in the Ongeluk Andesite Formation in a road-cutting west of Griquatown, South Africa, Trans. Geol. Soc. S. Africa, 1976, vol. 79, pp. 53–57.Google Scholar
  24. 24.
    Knoll, A.H., Neoproterozoic evolution and environmental change, in Early Life on Earth, New York: Columbia Univ. Press, 1994, pp. 439–449.Google Scholar
  25. 25.
    Knoll, A.H. and Barghoorn, E.S., Archaean microfossils showing cell division from the Swaziland System of South Africa, Science, 1977, vol. 198, pp. 396–398.CrossRefGoogle Scholar
  26. 26.
    Krasnoshchekova, L.A., Atlas osnovnykh tipov magmaticheskikh porod: uchebnoe posobie. Tomskii politekhnicheskii universitet (Atlas of the Main Types of Magmatic Rocks: Handbook: Tomsk Polytechnical University), Tomsk, Tomsk. Politekh. Univ., 2012.Google Scholar
  27. 27.
    Kulikov, V.S., Pana-Kuolajarva structure, Komatiity i vysokomagnezial’nye vulkanity rannego dokembriya Baltiiskogo shchita (Komatites and High-magnesia Vulcanites of the Early Pre-Cambrian of the Baltic Shield), Leningrad: Nauka, 1988, pp. 62–68.Google Scholar
  28. 28.
    Lougheed, M.S. and Mancuso, J.J., Hematite framboids in the Nagaunee Iron Formation, Michigan: Evidence for their biogenic origin, Econom. Geol., 1973, vol. 68, pp. 202–209.CrossRefGoogle Scholar
  29. 29.
    Lysnes, K., Thorseth, I.H., Steinsbu, B.O., et al., Microbial community diversity in seafloor basalts from the Arctic spreading ridges, FEMS Microbiol. Ecol., 2004, vol. 50, no. 3, pp. 213–230.CrossRefGoogle Scholar
  30. 30.
    McLoughlin, N., Furnes, H., Banerjee, N.R., et al., Volcanic glass a habitat for the origins and evolution of microbial life, in II International Conference on the Biosphere Origin and Evolution, October 28–November 2, Loutraki, Greece: Abstracts, Loutraki, 2007, pp. 16–17.Google Scholar
  31. 31.
    Moore, J.G., Mechanism of formation of pillow lava, Am. Sci., 1975, vol. 63, no. 3, pp. 269–277.Google Scholar
  32. 32.
    Petrograficheskii kodeks Rossii. Magmaticheskie, metamorficheskie, metasomaticheskie, impaktnye obrazovaniya (Petrographic Code of Russia: Magmatic, Metamorphic, Metasomatic, and Impoct Formations), St. Petersburg, Vseross. Nauchno-Issled. Geol. Inst., 2008.Google Scholar
  33. 33.
    Puchtel, I.S., Haase, K.M., Hofmann, A.W., et al., Petrology and geochemistry of crustally contaminated komatiitic basalts from the Vetreny Belt, southeastern Baltic Schield: Evidence for an early Proterozoic mantle plume beneath rifted Archean continental lithosphere, Geochim. Cosmochim. Acta, 1997, vol. 61, no. 6, pp. 1205–1222.CrossRefGoogle Scholar
  34. 34.
    Puchtel, I.S., Brugmann, G.E., Hofmann, A.W., et al., On isotope systematics of komatiitic basalts from the Vetreny Belt, Baltic Shield: Evidence for a chondritic source of the 2.45 Ga plume, Contrib. Mineral. Petrol., 2001, vol. 140, pp. 588–599.CrossRefGoogle Scholar
  35. 35.
    Pushcharovsky, Yu.M., Skolotnev, S.G., Peive, A.A., et al., Geologiya i metallogeniya Sredinno-Atlanticheskogo khrebta: 5°–7° (Geology and Metallogeny of the Mid-Atlantic Ridge: 5–7° N), Moscow: GEOS. 2004.Google Scholar
  36. 36.
    Rasmussen, B., Filamentous microfossils in a 3,235-million-year-old volcanogenic massive sulfide deposit, Nature, 2000, vol. 405, pp. 676–679.CrossRefGoogle Scholar
  37. 37.
    Resolution of the 3rd All-Russia Meeting on the General Questions of Pre-Cambrian Stratification, Stratigr. Geol. Korrelyatsiya, 2001, vol. 9, no. 3, pp. 101–106.Google Scholar
  38. 38.
    Rozanov, A.Yu., Conditions of life on the early Earth after 4 billion years ago, Problemy proiskhozhdeniya zhizni (Problems of the Origin of Life), Moscow: Paleontol. Inst. Ross. Akad. Nauk, 2009, pp. 185–202.Google Scholar
  39. 39.
    Rozanov, A.Yu. and Astafieva, M.M., The evolution of the Early Precambrian geobiological systems, Paleontol. J., 2009, vol. 43, no. 8, pp. 911–927.CrossRefGoogle Scholar
  40. 40.
    Schopf, J.W., Ed., Earth’s Biosphere, Its Origin and Evolution, Princeton: Univ. Press, 1983.Google Scholar
  41. 41.
    Schopf, J.W., Microfossils of the Early Archean Apex Chert: New evidence of the antiquity of life, Science, 1993, vol. 260, no. 5108, pp. 640–646.CrossRefGoogle Scholar
  42. 42.
    Sharkov, E.V. and Bogina, M.M., Evolution of magmatism in the Paleoproterozoic: Geology, geochemistry, isotopy, Stratigrafiya. Geol. Korrelyatsiya, 2006, vol. 14, no. 4, pp. 3–27.Google Scholar
  43. 43.
    Sharkov, E.V., Evseeva, K.A., Krasivskaya, I.S., and Chistyakov, A.V., Magmatic systems of the Early Paleoproterozoic Baltic Great Igneous Province of siliceous high-magnesia (boninite-like) series, Geol. Geofiz., 2005, no. 9, pp. 968–980.Google Scholar
  44. 44.
    Sharkov, E.V., Shatagin, K.N., Krasivskaya, I.S., Chernyshev, I.V., Bortnikov, N.S., Chistyakov, A.V., Trubkin, N.V., and Kramchaninov, A.Yu., Pillow lavas of the Sierra Leone polygon, Mid-Atlantic ridge, 5°–7° N: Sr-Nd isotope systematics, geochemistry, and petrology, Petrologiya, 2008, vol. 16, no. 4, pp. 356–375.Google Scholar
  45. 45.
    Sharkov, E.V., Trubkin, N.V., Krasivskaya, I.S., Bogatikov, O.A., Mokhov, A.V., Chistyakov, A.V., and Evseeva, K.A., Structural features and composition of the most ancient volcanic glass in boninite-like lavas of the Early Paleoproterozoic of southern Karelia (Russia), Petrologiya, 2004, vol. 12, no. 3, pp. 264–280.Google Scholar
  46. 46.
    Sigurdsson, H., The history of volcanology, in Encyclopedia of volcanoes, Sigurdsson, H., Ed., New York: Academic Press, 1999, pp. 15–37.Google Scholar
  47. 47.
    Stetter, K.O., Hyperthermofiles in the history of life, Philos. Trans. Roy. Soc., 2006, vol. B 361, pp. 1837–1843.Google Scholar
  48. 48.
    Stetter, K.O., Fiala, G., Huber, G., and Segerer, A., Hyperthermofilic microorganisms, FEMS Microbiol. Rev., 1990, vol. 75, pp. 117–124.CrossRefGoogle Scholar
  49. 49.
    Stevens, T.O. and McKinley, J.P., Lithoautotrophic microbial ecosystems in deep basalt aquifers, Science, 1995, vol. 270, pp. 450–454.CrossRefGoogle Scholar
  50. 50.
    Sugitani, K., Mimura, K., Takeuchi, M., Lepot, K., Ito, S., and Javaux, E.J., Early evolution of large micro-organisms with cytological complexity revealed by microanalyses of 3.4 Ga organic-walled microfossils, Geobiology, 2015, vol. 13, pp. 507–521.CrossRefGoogle Scholar
  51. 51.
    Takai, K., Nakamura, K., Toki, T., Tsunogai, U., Miyazaki, J., Hirayama, H., Nakagawa, S., Nunoura, N., and Horikoshi, K., Cell proliferation at 122°C and isotopically heavy CH4 production by a hyperthermophilic methanogen under high-pressure cultivation, PNAS, 2008, vol. 105, no. 31, pp. 10949–10954.CrossRefGoogle Scholar
  52. 52.
    Thorseth, I.H., Torsvik, T., Torsvik, V., Daae, F.L., and Pedersen, R.B., Keldysh-98 scientific party, 2001: Diversity of life in ocean floor basalts, Earth Planet Sci. Lett., 2001, vol. 194, pp. 31–37.CrossRefGoogle Scholar
  53. 53.
    Timofeev, B.V., Drevneishaya flora Pribaltiki (Most Ancient Flora of the Baltic Region), Moscow: Gostoptekhizdat, 1959.Google Scholar
  54. 54.
    Tolkovyi slovar’ po pochvovedeniyu (Explanatory Dictionary on Soil Science), Moscow: Nauka, 1975.Google Scholar
  55. 55.
    Walker, G.P.L., Morphometric study of pillow-size spectrum among pillow lavas, Bull. Volcanol., 1992, vol. 54, no. 6, pp. 459–474.CrossRefGoogle Scholar
  56. 56.
    Walter, M.R., Archaean stromatolites: Evidence of the Earth’s earliest benthos, in Earth’s" Earliest Biosphere: Its Origin and Evolution, Princeton: Princeton Univ. Press, 1983, pp. 187–213.Google Scholar
  57. 57.
    Zavarzin, G.A., Development of microbial assemblages in the history of the Earth, Problemy doantropogennoi evolyutsii biosfery (Problems of Pre-Anthropogene Evolution of the Biosphere), Moscow: Nauka, 1993, pp. 212–221.Google Scholar
  58. 58.
    Zavarzin, G.A., Establishment of the system of the biogeochemical cycles, Paleontol. Zh., 2003a, no. 6, pp. 16–24.Google Scholar
  59. 59.
    Zavarzin, G.A., Lektsii po prirodovedcheskoi mikrobiologii (Lectures on Historical Microbiology), Moscow, Nauka, 2003b.Google Scholar
  60. 60.
    Zavarzin, G.A., Rozanov, A.Yu., Ushatinskaya, G.T., Hoover, R.B., Gerasimenko, L.M., and Ragozina, A.L., Atlas of microorganisms from ancient phosphorites of Khubsugul (Mongolia). Huntsville, Alabama, USA, 2000, p. 168.Google Scholar
  61. 61.
    Zhang, Chuanlun, Vali, H., Romanek, Ch.H., et al., Formation of single-domain magnetite by a thermophilic bacterium, Am. Mineral., 1998, vol. 83, pp. 1409–1418.CrossRefGoogle Scholar
  62. 62.
    Zhegallo, E.A., Rozanov, A.Yu., Ushatinskaya, G.T., Hoover, R.B., Gerasimenko, L.M., and Ragozina, A.L., Atlas of Microorganisms from Ancient Phosphorites of Khubsugul (Mongolia), Huntsville, Alabama, USA, 2000.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Borissiak Paleontological Institute, Russian Academy of SciencesMoscowRussia

Personalised recommendations