Advertisement

Paleontological Journal

, Volume 52, Issue 10, pp 1114–1125 | Cite as

Bacteriomorph Structures in Nodules, a Characteristic of Euxinic Conditions of Nodule Formation

  • A. I. Antoshkina
Article
  • 6 Downloads

Abstract

Electron microscopic, spectroscopic, and geochemical study of Middle Ordovician shamosite, Wenlockian calcite, and Lower Carboniferous siderite nodules revealed the presence of organic matter and traces of microbial organisms involved in the formation of iron oxides and hydroxides and mineralized microbial films. The structure and composition of the films show high similarity to mineralized glycocalyx, which is a product of bacterial metabolism. Diversity of the framboidal micropyrite and bacteriomorph structures in size and shape indicates the formation of nodules under anoxic bottom conditions and abundance of sulfate-reducing, iron-reducing, and iron-oxidizing bacteria. The presence of authigenic minerals in the nodules, which is atypical for sedimentary rocks, suggests the influence of bottom gas–fluid seeps and, therefore, local hydrosulfuric contamination, fluctuations in salinity, and intensive development of bacterial communities.

Keywords:

bacteriomorph structures euxinic conditions nodules δ13С and δ18О Paleozoic Chernyshev Ridge Northern Urals Subpolar Urals 

Notes

ACKNOWLEDGMENTS

The present work was supported by the Program of the Russian Academy of Sciences “Evolution of the Organic World and Planetary Processes” (Subprogram 2) and by the Russian Foundation for Basic Research (Ural Branch), project no. 15-18-5-47.

REFERENCES

  1. 1.
    Alekseeva, T.V., Sapova, E.V., Gerasimenko, L.M., and Alekseev, A.O., Transformation of clayey minerals under influence of alcophilic cyanobacterial community, Mikrobiologiya, 2009, vol. 78, no. 6, pp. 816–825.Google Scholar
  2. 2.
    Antoshkina, A.I., Ryabinkina, N.N., and Valyaeva, O.Yu., Genesis of sideritic nodules from Lower Carboniferous siliciclastic strata of the Subpolar Urals, Litol. Polezn. Iskop., 2017, no. 2, pp. 130–144.Google Scholar
  3. 3.
    Bagdasarova, M.V., On the mineralogy of terrigenous deposits of the Lower Carboniferous of the Subpolar Urals, in Fatsii i usloviya formirovaniya neftegazoproizvodyashchikh svit (Facies and Conditions of the Formation of Oil-and-Gas-bearing Formations), Moscow: Nauka, 1966, pp. 64–92.Google Scholar
  4. 4.
    Bortnikov, N.S., Novikov, V.M., Gendler, T.S., Piloyan, G.O., Zhegallo, E.A., and Boeva, N.M., Biomineralization, magnetic and thermal properties of a ferriferous nodule from the laterite bauxite deposits of Baolok in southern Vietnam, Dokl. Ross. Akad. Nauk Ser. Geokhim., 2011, vol. 441, no. 6, pp. 788–791.Google Scholar
  5. 5.
    Christensen, N.B., Stable isotope geochemistry of siderite concretions from Jurassic sedimentary rocks on Bornholm (Denmark), Bull. Geol. Soc. Denmark, 1995, vol. 42, pp. 47–56.Google Scholar
  6. 6.
    Cramer, B.D. and Saltzman, M.R., Fluctuations in epeiric sea carbonate production during Silurian positive carbon isotope excursions: A review of proposed paleoceanographic models, Palaeogeogr., Palaeoclimatol. Palaeoecol., 2007, vol. 245, pp. 37–45.CrossRefGoogle Scholar
  7. 7.
    Duguid, S.M.A., Keyser, T.K., James, N.P., and Rankey, E.S., Microbes and ooids, J. Sediment. Res., 2010, vol. 80, pp. 236–251.CrossRefGoogle Scholar
  8. 8.
    Ellwood, B.B., Chrzanowski, T.H., Hrouda, F., Long, G.J., and Buhl, M.L., Siderite formation in anoxic deep-sea sediments: A synergetic bacteria controlled process with important implications in paleomagnetism, Geology, 1988, vol. 16, no. 11, pp. 980–982.CrossRefGoogle Scholar
  9. 9.
    Ferretti, A., Ooidal ironstones and laminated ferruginous deposits from the Silurian of the Carnic Alps, Austria, Boll. Soc. Paleontol. Ital., 2005, vol. 44, no. 3, pp. 263–278.Google Scholar
  10. 10.
    Flügel, E., Microfacies of Carbonate Rocks: Analysis, Interpretation and Application, Berlin: Heidelberg–Springer, 2004.CrossRefGoogle Scholar
  11. 11.
    Folk, R.L., Nannobacteria and the formation of framboidal pyrite, J. Earth Syst. Sci., 2005, vol. 114, no. 3, pp. 369–374.CrossRefGoogle Scholar
  12. 12.
    Franceschelli, M., Puxeddu, M., and Carta, M., Mineralogy and geochemistry of Late Ordovician phospate-bearing oolitic ironstones from NW Sardinia, Italy, Mineral. Petrol., 2000, vol. 69, nos. 3–4, pp. 267–293.CrossRefGoogle Scholar
  13. 13.
    Fredrickson, J.K., Zachara, J.M., Kennedy, D.W., Dong, H., Onstott, T.C., Hinman, N.W., and Li, S.M., Biogenic iron mineralization accompanying the dissimilatory reduction of hydrous ferric oxide by a groundwater bacterium, Geochim. Cosmochim. Acta, 1998, vol. 62, pp. 3239–3257.CrossRefGoogle Scholar
  14. 14.
    Gerasimenko, L.M. and Ushatinskaya, G.T., Cyanobacteria, cyanobacterial communities, mats, and biofilms, in Bakterial’naya paleontologiya (Bacterial Paleontology), Moscow: Paleontol. Inst. Ross. Akad Nauk, 2002, pp. 36–46.Google Scholar
  15. 15.
    Halas, S. and Chlebowski, R., Unique siderite occurrence in Baltic Sea: A clue to siderite–water oxygen isotope fractionation at low temperatures, Geol. Quart., 2004, vol. 48, no. 4, pp. 317–322.Google Scholar
  16. 16.
    Iskopaemye bakterii i drugie mikroorganizmy v zemnykh porodakh i astromaterialakh (Fossil Bacteria and Other Microorganisms in Terrestrial Rocks and Astromaterial), Rozanov, A.Yu. and Ushatinskaya, G.T., Eds., Moscow: Paleontol. Inst. Ross. Akad Nauk, 2011.Google Scholar
  17. 17.
    James, H.L., Chemistry of the Iron-rich Sedimentary Rocks: Chapter W: Data of Geochemistry, Fleischer, M., Ed., Washington, DC: US Govern. Print. Office, 1966.Google Scholar
  18. 18.
    Johnson, C.M., Ludois, J.M., Beard, B.L., Beukes, N.J., and Heimann, A., Iron formation carbonates: Paleoceanographic proxy or recorder of microbial diagenesis?, Geology, 2013, vol. 41, no. 11, pp. 1147–1150.CrossRefGoogle Scholar
  19. 19.
    Khipeli, R.V., Patterns of the formation of Paleozoic organogenic buildups and reservoirs connected with them in the southern Khoreiverskaya Depression, Candidate’s Dissertation on Geology and Mineralogy, Syktyvkar, 2005.Google Scholar
  20. 20.
    Lovley, D.R. and Phillips, E.J.P., Novel mode of microbial energy metabolism: Organic carbon oxidation coupled to dissimilatory reduction of iron or manganese, Appl. Environ. Microbiol., 1988, vol. 54, pp. 1472–1480.Google Scholar
  21. 21.
    Männik, P. and Martma, T., Llandovery–Wenlock boundary in the Subpolar Urals, Ichthyolith Is. Sp. Syktyvkar Geoprint, 2000, no. 6, pp. 64–67.Google Scholar
  22. 22.
    Merinero, R., Lunar, R., Martinez-Frias, J., Somoza, L., and Diaz-del-Rio, V., Iron oxyhydroxide and sulphide mineralization in hydrocarbon seep-related carbonate submarine chimneys, Gulf of Cadiz (SW Iberian Peninsula), Mar. Petrol. Geol., 2008, vol. 25, pp. 706–713.CrossRefGoogle Scholar
  23. 23.
    Merkushova, M.Yu. and Zhegallo, E.A., Biomorphic structures in rich iron ores Kma (based on the results of electron microscopic examination, Vest. Voronezh. Gos. Univ. Ser. Geol., 2016, no. 2, pp. 150–154.Google Scholar
  24. 24.
    Miot, J., Benzerara, K., Morin, G., Kappler, A., Bernard, S., Obst, M., Ferard, C., Skouri-Panet, F., Guigner, J.-M., Posth, N., Galvez, M., Brown, G.E., Jr., and Guyot, F., Iron biomineralization byanaerobic neutrophilic iron-oxidizing bacteria, Geochim. Cosmochim. Acta, 2009, vol. 73, no. 3, pp. 696–711.CrossRefGoogle Scholar
  25. 25.
    Munnecke, A., Calner, M., Harper, D.A.T., and Servais, T., Ordovician and Silurian sea-water chemistry, sea level, and climate: A synopsis, Palaeogeogr., Palaeoclimalol., Palaeoecol., 2010, vol. 296, pp. 389–413.CrossRefGoogle Scholar
  26. 26.
    Naimark, E.B., Eroshchev-Shak, V.A., Chizhikova, N.P., and Kompantseva, E.I., Interaction of clayey minerals with microorganisms: A review of experimental data, Zh. Obshch. Boil., 2009, vol. 70, no. 2, pp. 155–167.Google Scholar
  27. 27.
    Novikov, V.M., Bortnikov, N.S., Boeva, N.M., Zhukhlistov, A.P., Zhegallo, E.A, Novakova, A.A., and Sobo-leva, S.V., Biogenic nanominerals of iron oxides in weathering crusts of basalts of continental marginal areas of eastern Asia, using an example of Far East Russia and Vietnam: Paper 2. Hematite, Vest. Voronezh. Gos. Univ. Ser. Geol., 2016, no. 4, pp. 23–30.Google Scholar
  28. 28.
    O’Reilly, S.S., Mariotti, G., Winter, A.R., Newman, S.A., Matys, E.D., McDermott, F., Pruss, S.B., Bosak, T., Summons, R.E., and Klepac-Ceraj, V., Molecular biosignatures reveal common benthic microbial sources of organic matter in ooids and grapestones from Pigeon Cay, the Bahamas, Geobiology, 2017, vol. 15, no. 1, pp. 112–130. doi 10.1111/gbi.12196CrossRefGoogle Scholar
  29. 29.
    Pacton, V., Ariztegui, D., Wacey, D., Kilburn, M.R., Rollion-Bard, C., Farah, R., and Vascoucelos, C., Going nano: A new step towards understanding the processes governing fresh water ooid formation, Geology, 2012, vol. 40, no. 6, pp. 547–550.CrossRefGoogle Scholar
  30. 30.
    Puchkov, V.N., Geologiya Urala i Priural’ya (aktual’nye voprosy stratigrafii, tektoniki, geodinamiki i metallogenii) (Geology of the Urals and Fore-Urals: Topical Questions of Stratigraphy, Tectonics, Geodynamics and Metallogeny), Ufa: Dizain PoligrafServis, 2010.Google Scholar
  31. 31.
    Roh, Y., Zhang, C.-L., Vali, H., Lauf, R.J., Zhou, J., and Pheps, T.J., Biogeochemical and environmental factors in Fe biomineralization: Magnetite and siderite formation, Clays Clay Miner., 2003, vol. 51, no. 1, pp. 83–95.CrossRefGoogle Scholar
  32. 32.
    Ryabinkina, N.N., Usloviya formirovaniya i perspektivy neftegazonosnosti vizeiskogo terrigennogo kompleksa Pechorskogo basseina (Conditions of the Formation and Prospects of the Oil-and-Gas Presence in he Visean Terrigenous Complex of the Pechora Basin), Ekaterinburg: Ural. Otd. Ross. Akad Nauk, 2006.Google Scholar
  33. 33.
    Saґnchez-Romain, M., Fernandez-Remolar, D., Amils, R., Sanchez-Navas, A., Schmid, T., Martin–Uriz, P.S., Rodrıguez, N., McKenzie, J.A., and Vasconcelos, C., Microbial mediated formation of Fe-carbonate minerals under extreme acidic conditions, Sci. Rep., 2014. doi 10.1038/srep04767Google Scholar
  34. 34.
    Scotese, C.R., Paleogeographic Atlas, Calgary: Paleomap, Project., 2000.Google Scholar
  35. 35.
    Shebolkin, D.N. and Mannik, P., Wenlockian deposits of the southern part of the Chernyshev Ridge (Timan–Severouralsk Region), Litosfera, 2014, no. 1, pp. 33–40.Google Scholar
  36. 36.
    Strakhov, N.M., Osnovy teorii litogeneza (Fundamentals of the Theory of Lithogenesis), vol. 1: Tipy litogeneza i ikh razmeshchenie na poverkhnosti Zemli (Types of Lithogenesis and Accommodation on the Earth’s Surface), Moscow: Akad. Nauk SSSR, 1960.Google Scholar
  37. 37.
    Summons, R.E., Bird, L.R., Gillespie, A.I., Pruss, S.B., Roberts, M., and Sessions, A.L., Lipid biomarkers in ooids from different locations and ages: Evidence for a common bacterial flora, Geobiology, 2013, vol. 11, no. 5, pp. 420–436.CrossRefGoogle Scholar
  38. 38.
    Suttner, T.J. and Kido, E., Ordovician and Silurian times: Global events and biodiversity, Mem. Geol. Soc. Ind., 2011, no. 78, pp. 29–68.Google Scholar
  39. 39.
    Tomas, S., Homann, M., Mutti, M., Amour, F., Christ, N., Immenhauser, A., Agar, S.M., and Kabiri, L., Alternation of microbial mounds and ooid shoals (Middle Jurassic, Morocco): Response to paleoenvironmental changes, Sedim. Geol., 2013, vol. 294, pp. 68–82.CrossRefGoogle Scholar
  40. 40.
    Van Houten, F.B. and Bhattacharyya, D.P., Phanerozoic oolitic ironstones—geologic record and facies model, Ann. Rev. Earth Planet. Sci., 1982, vol. 10, no. 1, pp. 441–457.CrossRefGoogle Scholar
  41. 41.
    Voigt, T., Gaupp, R., and Rohling, H-G., Lake deposits of the Early Triassic Buntsandstein in central Germany: Type localities of oolites and stromatolites, in Proceedings of the 5th International Limnogeological Congress, Constanza, 2011, pp. 191–211.Google Scholar
  42. 42.
    Vu, B., Chen, M., Russell, J., Crawford, R.J., and Ivanova, E.P., Bacterial extracellular polysaccharides involved in biofilm formation, Molecules, 2009, vol. 14, pp. 2535–2554.CrossRefGoogle Scholar
  43. 43.
    Woodland, B.G. and Stenstrom, R.C., The occurrence and origin of siderite concretions in the Francis Creek Shale (Pennsylvanian) of northeastern Illinois, in Mazon Creek Fossils, Nitecki, M.H., Ed., New York: Academic Press, 1979, pp. 69–103.Google Scholar
  44. 44.
    Wu, Z., Yuan, L., Jia, N., Wang, Yu., and Sun, L., Microbial biomineralization of iron seepage water: Implication for the iron ores formation in intertidal zone of Zhoushan Archipelago, East China Sea, Geochem. J., 2009, vol. 43, pp. 167–177.CrossRefGoogle Scholar
  45. 45.
    Yoshida, M., Khan, I.H., and Ahmad, M.N., Remanent magnetization of oolitic ironstone beds, Hazara area, Lesser Himalayan thrust zone, northern Pakistan: Its acquisition, timing, and paleoenvironmental implications, Earth Planets Space, 1998, vol. 50, pp. 733–744.CrossRefGoogle Scholar
  46. 46.
    Yudovich, Ya.E., Maidl’, T.V., Andreev, G.I., Korel’skii, V.P., Entsova, F.I., Kuz’kokova, N.N., Pavlov, L.P., Silaev, V.I., and Chermnykh, V.A., Geochemistry of reference sections of the Lower Carboniferous and Permian on the Kozhim River (Polar Urals), Tr. Inst. Geol. Komi Fil. Akad. Nauk SSSR, 1979, vol. 28 (Lithology and Geochemistry of Paleozoic Formations of the Northern Urals and Pai-Khoi), pp. 3–36.Google Scholar
  47. 47.
    Yudovich, Ya.E. and Shulepova, A.N., Oolitic iron ores in Ordovician limestones of the Pechora Urals, in Geologiya i poleznye iskopaemye Severo-Vostoka Evropeiskoi chasti SSSR: Ezhegodnik-1972 (Geology and Mineral Resources of the Northeast of the European Part of the USSR: Yearbook-1972), Syktyvkar: Inst. Geol. Komi Fil. Akad Nauk SSSR, 1973, pp. 21–27.Google Scholar
  48. 48.
    Yudovich, Ya.E., Yudin, V.V., Shulepova, A.N., and Khoroshilova, L.A., New data on oolitic iron ores in the Middle Ordovician of the Northern Urals, in Litologiya i usloviya obrazovaniya dokembriiskikh i palezoiskikh otlozhenii Urala (Lithology and Conditions of the Formation of Precambrian and Paleozoic Deposits of the Urals), Ekaterinburg: Ural. Nauchn. Tsentr Akad. Nauk SSSR, 1981, pp. 26–34.Google Scholar
  49. 49.
    Yushkin, N.P., Silaev, V.I., Zharkov, V.A., Filippov, V.N., Lyutoev, V.P., and Simakova, Yu.S., Mesozoic coprolites: mineralogical–geochemical properties and relation to the prediction of the phosphate content, in Problemy mineralogii, petrografii i metallogenii (Problems of Mineralogy, Petrography, and Metallogeny), Perm: Perm. Gos. Univ., 2013, no. 16, pp. 26–52.Google Scholar
  50. 50.
    Zholnovich, V.A., Framboidal units of pyrite in the deposits of modern lakes of he humid zone, EVMO, 1990, vol. 4, pp. 39–43.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Institute of Geology, Komi Science Center, Ural Branch, Russian Academy of SciencesSyktyvkarRussia

Personalised recommendations