Paleontological Journal

, Volume 52, Issue 7, pp 748–754 | Cite as

Challenges of Gondwanan Marine-Nonmarine Correlations—A Palynological Perspective

  • A. E. GötzEmail author
  • A. WheelerEmail author


Marine–nonmarine correlations of the Permian of Laurussia are recently addressed using integrated sedimentological–palaeontological–geochemical signatures aiming to refine existing correlation schemes. However, for Gondwana such efforts are still in an early stage, with first studies on single localities and within distinct basins. Palynology is seen to be the key discipline to tackle this challenge and recent efforts to use climatic signatures recorded in palynomorph assemblages for cross-basin and interbasinal correlations of Karoo-aged basins in southern Africa are very promising. Their near continuous basin fill from the Pennsylvanian to the Early Jurassic captures the most prominent climate change in the Phanerozoic. Postglacial coal-bearing successions of Permian and Triassic age in the Main Karoo Basin of South Africa enable detailed studies of changing vegetation on land. Marine black shales capture changes in paleoceanographic conditions as reflected in marine phytoplankton assemblages and changing terrestrial input of pollen grains and spores, enabling precise correlation of terrestrial coals and marine shales. Ongoing research aims to establish the use of climate signals recorded in terrestrial and marine palynofacies for correlation on a Gondwana-wide, interregional scale.


Marine–nonmarine correlation palynology paleoclimate Permian Gondwana 



This contribution is part of ongoing research of the Carboniferous–Permian Nonmarine–Marine Correlation Working Group and the Kazan Federal University working group on the Stratigraphy of oil- and gas-bearing reservoirs of the Late Paleozoic. The work was performed according to the Russian Government Program for Competitive Growth of Kazan Federal University among World’s Leading Scientific and Education Centers. The study is partly funded by KARIN (Karoo Research Initiative) within CIMERA (NRF-DST Centre of Excellence for Integrated Mineral and Energy Resource Analysis) hosted by the University of Johannesburg, South Africa.


  1. 1.
    Aitken, G.A., Permian palynomorphs from the No. 5 seam, Ecca Group, Witbank/Highveld Coalfields, South Africa, Palaeontol. Afr., 1994, vol. 31, pp. 97–109.Google Scholar
  2. 2.
    Anderson, J.M., The biostratigraphy of the Permian and Triassic: Part 3. A review of Gondwana Permian palynology with particular reference to the northern Karoo Basin of South Africa, Mem. Bot. Surv. S. Afr., 1977, vol. 41, pp. 1–133.Google Scholar
  3. 3.
    Backhouse, J., Permian palynostratigraphy of the Collie Basin, western Australia, Rev. Palaeobot. Palynol., 1991, vol. 67, pp. 237–314.CrossRefGoogle Scholar
  4. 4.
    Balme, B.E., Palynology of Permian and Triassic strata in the Salt Range and Surghar Range, West Pakistan, in Stratigraphic Boundary Problems: Permian and Triassic of West Pakistan, Kummel, B. and Teichert, C., Eds., Univ. Press of Kansas, Depart. Geol. Spec. Publ., 1970, vol. 4, pp. 306–453.Google Scholar
  5. 5.
    Balme, B.E., Palynology and the Carboniferous–Permian boundary in Australia and other Gondwana countries, Palynology, 1980, vol. 4, pp. 43–56.CrossRefGoogle Scholar
  6. 6.
    Bangert, B., Stollhofen, H., Lorenz, V., and Armstrong, R., The geochronology and significance of ash-fall tuffs in the glaciogenic Carboniferous–Permian Dwyka Group of Namibia and South Africa, J. Afr. Earth Sci., 1999, vol. 29, pp. 33–49.CrossRefGoogle Scholar
  7. 7.
    Catuneanu, O., Hancox, P.J., and Rubidge, B.S., Reciprocal flexural behaviour and constrasting stratigraphies: A new basin development model for the Karoo retroarc foreland system, South Africa, Basin Res., 1998, vol. 10, pp. 417–439.CrossRefGoogle Scholar
  8. 8.
    Césari, S.N., Palynological biozones and radiometric data at the Carboniferous–Permian boundary in western Gondwana, Gondwana Research, 2007, vol. 11, pp. 529–536.CrossRefGoogle Scholar
  9. 9.
    Césari, S.N. and Gutiérrez, P.R., Palynostratigraphy of Upper Palaeozoic sequences in central–western Argentina, Palynol., 2000, vol. 24, pp. 113–146.Google Scholar
  10. 10.
    Day, M.O., Ramezani, J., Bowring, S.A., Sadler, P.M., Erwin, D.H., Abdala, F., and Rubidge, B.S., When and how did the terrestrial mid-Permian mass extinction occur? Evidence from the tetrapod record of the Karoo Basin, South Africa, Proc. Roy. Soc. B, 2015, vol. 282, issue 1811, pp. 1–8.Google Scholar
  11. 11.
    Evans, P.R., Palynological examination of AAO Westgrove 2 Well, Surat Basin, Queensland. Mines Administration Pty Ltd, 1962, Well Completion Report, Q/55-56, P/110.Google Scholar
  12. 12.
    Falcon, R.M.S., Palynostratigraphy of the Lower Karroo sequence in the central Sebungwe District, Mid-Zambezi Basin, Rhodesia, Palaeontol. Afr., 1975, vol. 18, pp. 1–29.Google Scholar
  13. 13.
    Falcon, R.M.S., A palynological comparison of Karoo sediments on opposite sides of the Rhodesian Watershed with stratigraphic application. unpubl. PhD Thesis, 1978, Johannesburg: Univ. Witwatersrand.Google Scholar
  14. 14.
    Falcon, R.M.S., Pinheiro, H.J., and Sheperd, P., The palynobiostratigraphy of the major coal seams in the Witbank Basin with lithostratigraphic, chronostratigraphic and palaeoclimatic implications, Com. Serv. Geol. Portugal, 1984, vol. 70, pp. 215–243.Google Scholar
  15. 15.
    Farabee, M.J., Taylor, E.L., and Taylor, T.N., Correlation of Permian and Triassic palynomorph assemblages from the central Transantarctic Mountains, Antarctica, Rev. Palaeobot. Palynol., 1990, vol. 65, pp. 257–265.CrossRefGoogle Scholar
  16. 16.
    Fildani, A., Weislogel, A., Drinkwater, N., McHargue, T., Tankard, A., Wooden, J., Hodgson, D., and Flint, S., U‒Pb zircon ages from the southwestern Karoo Basin, South Africa: Implications for the Permian–Triassic boundary, Geol., 2009, vol. 37, pp. 719–722.CrossRefGoogle Scholar
  17. 17.
    Gastaldo, R.A., Kamo, S.L., Neveling, J., Geissman, J.W., Bamford, M., and Looy, C.V., Is the vertebrate-defined Permian–Triassic boundary in the Karoo Basin, South Africa, the terrestrial expression of the end-Permian marine event? Geol., 2015, vol. 43, pp. 1–5.CrossRefGoogle Scholar
  18. 18.
    Götz, A.E., Palynological records of Gondwana’s mid-Permian climate amelioration: New insights from black shale deposits (Collingham Formation, South Africa), Geophys. Res. Abstracts, 2015, vol. 17, EGU2015-2315.Google Scholar
  19. 19.
    Götz, A.E., Hancox, P.J., and Lloyd, A., Permian climate change recorded in palynomorph assemblages of Mozambique (Moatize Basin, eastern Tete Province), Acta Palaeobot., 2017a, vol. 57, no. 1, pp. 3–11.CrossRefGoogle Scholar
  20. 20.
    Götz, A.E. and Ruckwied, K., Palynological records of the Early Permian postglacial climate amelioration (Karoo Basin, South Africa), Palaeobiodiv. Palaeoenviron., 2014, vol. 94, no. 2, pp. 229–235.CrossRefGoogle Scholar
  21. 21.
    Götz, A.E. and Ruckwied, K., Palynology of the Permian Prince Albert and Whitehill formations (Karoo Basin, South Africa): New insights on basin dynamics and implications for shale gas exploration. AASP Meeting, 2016, Houston, Texas.Google Scholar
  22. 22.
    Götz, A.E., Ruckwied, K., and Wheeler, A., Marine flooding surfaces recorded in Permian black shales and coal deposits of the Main Karoo Basin (South Africa): Implications for basin dynamics and cross-basin correlation, Int. J. Coal Geol., 2017b [in press].Google Scholar
  23. 23.
    Hancox, P.J. and Götz, A.E., South Africa’s coalfields—a 2014 perspective, Int. J. Coal Geol., 2014, vol. 132, pp. 170–254.CrossRefGoogle Scholar
  24. 24.
    Hankel, O., Lithostratigraphic subdivision of Karoo rocks of the Luwegu basin, Tanzania and their biostratigraphic classification based on micro-macroflora, fossil wood and vertebrates, Geol. Rundschau, 1987, vol. 76, pp. 539–565.CrossRefGoogle Scholar
  25. 25.
    Hankel, O., Late Permian to Early Triassic microfloral assemblages from the Maji ya Chumvi Formation, Kenya, Rev. Palaeobot. Palynol., 1992, vol. 72, pp. 129–147.CrossRefGoogle Scholar
  26. 26.
    Hart, G.F., Microfloral investigation of the Lower Coal Measures (K2); Ketewaka-Mchuchuma Coalfield, Tanganyika, Geol. Surv. Tanganyika, Bull., 1960, vol. 30, pp. 1–18.Google Scholar
  27. 27.
    Hart, G.F., Microflora from the Ketewaka-Mchuchuma Coalfield, Tanganyika, Geol. Surv. Tanzania, Bull., 1963, vol. 36, pp. 1–27.Google Scholar
  28. 28.
    Isbell, J.L., Cole, D.I., and Catuneanu, O., Carboniferous–Permian glaciation in the main Karoo Basin, South Africa: Stratigraphy, depositional controls, and glacial dynamics, in Resolving the Late Paleozoic Ice Age in Time and Space, Fielding, C.R., Frank, T.D., and Isbell, J.L., Eds., GSA Special Paper, 2008, vol. 441, pp. 71–82.Google Scholar
  29. 29.
    Johnson, M.R., Van Vuuren, C.J., Visser, J.N.J., Cole, D.I.,Wickens, H., de, V., Christie, A.D.M., Roberts, D.L., and Brandl, G., Sedimentary rocks of the Karoo Supergroup, in The Geology of South Africa, Johnson, M.R., Anhaeusser, C.R., and Thomas, R.J., Eds., Johannesburg/Council for Geoscience: Geol. Soc. S. Afr., 2006, pp. 461–499.Google Scholar
  30. 30.
    Kemp, E.M., Balme, B.E., Helby, R.J., Kyle, R.A., Playford, G., and Price, P.L., Carboniferous and Permian palynostratigraphy in Australia and Antarctica: A review, Bureau Mines Miner. Res. J. Austral. Geol. Geophys., 1977, vol. 2, pp. 177–208.Google Scholar
  31. 31.
    Larrsson, K., Lindström, S., and Guy-Ohlson, D., An Early Permian palynoflora from Milorgfjella, Dronning Maud Land, Antarctica, Antarctic Sci., 1990, vol. 2, pp. 331–344.CrossRefGoogle Scholar
  32. 32.
    Laurie, J.R., Bodorkos, S., Nicoll, R.S., Crowley, J.L., Mantle, D.J., Mory, A.J., Wood, G.R., Backhouse, J., Holmes, E.K., Smith, T.E., and Champion, D.C., Calibrating the Middle and Late Permian palynostratigraphy of Australia to the geologic time-scale via U–Pb zircon CA-IDTIMS dating, Austral. J. Earth Sci., 2016, vol. 63, no. 6, pp. 701–730.CrossRefGoogle Scholar
  33. 33.
    Lindström, S., Early–Late Permian palynostratigraphy and palaeobiogeography of Vestfjella, Dronning Maud Land, Antarctica, Rev. Palaeobot. Palynol., 1995a, vol. 86, pp. 157–173.CrossRefGoogle Scholar
  34. 34.
    Lindström, S., Early Permian palynostratigraphy of the Northern Heimefrontfjella Mountain Range, Dronning Maud Land, Antarctica, Rev. Palaeobot. Palynol., 1995b, vol. 89, pp. 359–415.CrossRefGoogle Scholar
  35. 35.
    Lindström, S. and McLoughlin, S., Synchronous palynofloristic extinction and recovery after the end-Permian event in the Prince Charles Mountains, Antarctica: Implications for palynofloristic turnover across Gondwana, Rev. Palaeobot. Palynol., 2007, vol. 145, pp. 89–122.CrossRefGoogle Scholar
  36. 36.
    McKay, M.P., Weislogel, A.L., Fildani, A., Brunt, R.L., Hodgson, D.M., and Flint, S.S., U-PB zircon tuff geochronology from the Karoo Basin, South Africa: Implications of zircon recycling on stratigraphic age controls, Int. Geol. Rev., 2015, vol. 57, pp. 393–410.CrossRefGoogle Scholar
  37. 37.
    McLoughlin, S., Geology of the Inglis Dome, Denison Trough, central Queensland, Depart. Geol. Univ. Queensland, 1988, vol. 12, pp. 229–263.Google Scholar
  38. 38.
    McMinn, A., Palynostratigraphy of the Middle Permian coal sequences of the Sydney Basin, Austral. J. Earth Sci., 1985, vol. 32, no. 3, pp. 301–309.CrossRefGoogle Scholar
  39. 39.
    Millsteed, B.D., Palynology of the Early Permian coal-bearing deposits near Vereeniging, Free State, South Africa, Bull. Council Geosci., 1999, vol. 124, pp. 1–77.Google Scholar
  40. 40.
    Modie, B.N., The Palaeozoic palynostratigraphy of the Karoo Supergroup and palynofacies insight into palaeoenvironmental interpretations, Kalahari Karoo Basin, Botswana. unpubl. PhD Thesis, Brest: Univ. Bretagne Occident., 2007, pp. 1–316.Google Scholar
  41. 41.
    Modie, B.N. and Le Hérissé, A., Late Palaeozoic palynomorph assemblages from the Karoo Supergroup and their potential for biostratigraphic correlation, Kalahari Karoo Basin, Bostwana, Bull. Geosci., 2009, vol. 84, no. 2, pp. 337–358.CrossRefGoogle Scholar
  42. 42.
    Montañez, I.P., Tabor, N.J., Niemeier, D., DiMichele, W.A., Frank, T.D., Fielding, C.R., and Isbell, J.L., CO2-forced climate and vegetation instability during Late Paleozoic deglaciation, Science, 2007, vol. 315, pp. 87–91.CrossRefGoogle Scholar
  43. 43.
    Mukhopadhyay, G.M.S., Roychowdhury, M., and Parui, P.K., Stratigraphic correlation between different Gondwana basins of India. J. Geol. Soc. Ind., 2010, vol. 76, pp. 251–266.CrossRefGoogle Scholar
  44. 44.
    Norvick, M., Permian and Late Carboniferous Palynostratigraphy of the Galilee Basin, Queensland, Bur. Mineral. Res., 1981, (1974/141).Google Scholar
  45. 45.
    Nyambe, I.A. and Utting, J., Stratigraphy and palynostratigraphy, Karoo Supergroup (Permian and Triassic), mid-Zambesi Valley, southern Zambia, J. Afr. Earth Sci., 1997, vol. 24, pp. 563–583.CrossRefGoogle Scholar
  46. 46.
    Pauline Sabina K. and Jha, N., Upper Cisuralian palynology and palaeoclimate of Manuguru area Godavari basin, India and their global correlation, J. Earth Sys. Sci., 2014, vol. 123, no. 7, pp. 1681–1692.CrossRefGoogle Scholar
  47. 47.
    Phillips, L., Crowley, J., Mantle, D., Esterle, J., Nicoll, R., McKellar, J., and Wheeler, A., U–Pb geochronology and palynology from Lopingian (Upper Permian) coal measure strata of the Galilee Basin, Queensland, Australia, Austral. J. Earth Sci., 2018 [in press].Google Scholar
  48. 48.
    Price, P.L., A Permian palynostratigraphy for Queensland, in Permian Geology of Queensland, Foster, C.B., Ed., Brisbane: Geol. Soc. Austral., 1983, pp. 155–211.Google Scholar
  49. 49.
    Price, P.L., Permian to Jurassic palynostratigraphic nomenclature of the Bowen and Surat basins, in The Surat and Bowen Basins, Southeast Queensland, Green, P., Ed., Brisbane: Queensland Depart. Mines Energy, 1997, pp. 137–178.Google Scholar
  50. 50.
    Rubidge, B.S., Erwin, D.H., Ramezani, J., Bowring, S.A., and De Klerk, W.J., High-precision temporal calibration of late Permian vertebrate biostratigraphy: U-Pb constraints from the Karoo Supergroup, South Africa. Geology, 2013, vol. 41 no. 3, pp. 363–366.CrossRefGoogle Scholar
  51. 51.
    Ruckwied, K. and Götz, A.E., Palynofacies of Permian black shales (Karoo Basin, South Africa): A powerful tool for shale gas exploration, in Proceedings of the 35th International Geological Congress, 2016, Cape Town, South Africa.Google Scholar
  52. 52.
    Ruckwied, K., Götz, A.E., and Jones, P., Palynological records of the Permian Ecca Group (South Africa): Utilizing climatic icehouse-greenhouse signals for cross basin correlations, Palaeogeogr. Palaeoclimatol. Palaeoecol., 2014, vol. 413, pp. 167–172.CrossRefGoogle Scholar
  53. 53.
    Scheffler, K., Buehmann, D., and Schwark, L., Analysis of Late Palaeozoic glacial to postglacial sedimentary successions in South Africa by geochemical proxies – Response to climate evolution and sedimentary environment, Palaeogeogr. Palaeoclimatol. Palaeoecol., 2006, vol. 240, pp. 184–203.CrossRefGoogle Scholar
  54. 54.
    Schneider, J.W., Shen, S., Richards, B.C., Lucas, S.G., Barrick, J., Werneburg, R., Wang, X., Kerp, H., Nurgaliev, D.K., Davydov, V., Golubev, V., Urazaeva, M.N., Rößler, R., Voigt, S., Saber, H., Götz, A.E., Ronchi, A., Oplustil, S., Scholze, F., and Abouchouaib, B., Report on the activities of the Nonmarine–Marine Correlation Working Group for 2014—program for 2015 and future tasks, Permophiles, 2014, vol. 60, pp. 31–36.Google Scholar
  55. 55.
    Scotese, C., A new global temperature curve for the Phanerozoic. GSA Ann. Meeting Denver, Colorado, Abstracts with Programs, 2016, vol. 48, no. 7: Paper No. 74-31. doi 10.1130/abs/2016AM-287167Google Scholar
  56. 56.
    Shen, S.-Z., Schneider, J.W., Angiolini, L., and Henderson, C.M., The International Permian Timescale: March 2013 update, in The Carboniferous-Permian Transition, Lucas, S.G., DiMichele, W., Barrick, J.E., Schneider, J.W., and Spielmann, J.A., Eds., New Mexico Mus. Natur. Hist. Sci. Bull., 2013, vol. 60, pp. 411–416.Google Scholar
  57. 57.
    Soledad Vázquez, M. and Césari, S.N., The Permian palynological Lueckisporites–Weylandites Biozone in the San Rafael Block and its correlation in Western Gondwana. J. South Am. Earth Sci., 2017, vol. 76, pp. 165–181.CrossRefGoogle Scholar
  58. 58.
    Souza, P.A. and Marques-Toigo, M., An overview on the palynostratigraphy of the Upper Paleozoic strata of the Brazilian Paraná Basin, Rev. Mus. Argentino Ciencias Natur. Nueva Ser., 2003, vol. 5, pp. 205–214.CrossRefGoogle Scholar
  59. 59.
    Stephenson, M.H., Permian palynostratigraphy: A global overview, in The Permian Timescale, Lucas, S.G. and Shen, S.Z., Eds, London: Geol. Soc. London, 2016, vol. 450, Spec. publ. [in press].Google Scholar
  60. 60.
    Stephenson, M.H. and McLean, D., International correlation of Early Permian palynofloras from the Karoo sediments of Morupule, Botswana, S. Afr. J. Geol., 1999, vol. 102, no. 1, pp. 3–14.Google Scholar
  61. 61.
    Stollhofen, H., Stanistreet, I.G., Bangert, B., and Grill, H., Tuffs, tectonism and glacially related sea-level changes, Carboniferous-Permian, southern Namibia, Palaeogeogr. Palaeoclimatol. Palaeoecol., 2000, vol. 161, pp. 127–150.CrossRefGoogle Scholar
  62. 62.
    Sun, Y., Joachimski, M.M., Wignall, P.B., Yan, C., Chen, Y., Jiang, H., Wang, L., and Lai, X., Lethally hot temperatures during the Early Triassic greenhouse, Science, 2012, vol. 338, pp. 366–370.CrossRefGoogle Scholar
  63. 63.
    Tiwari, R.S. and Tripathi, A., Marker assemblage zones of spore and pollen species through the Gondwana Palaeozoic and Mesozoic sequence in India, Palaeobotanist, 1992, vol. 40, pp. 194–236.Google Scholar
  64. 64.
    Wheeler, A., Esterle, J., van de Wetering, N., Palynological records of marine incursions in the Sydney-Gunnedah-Bowen Basin—preliminary investigation, Proceedings of the 40th Sydney Basin Symposium.Google Scholar
  65. 65.
    Wheeler, A. and Götz, A.E., Palynofacies patterns of the Highveld coal deposits (Karoo Basin, South Africa): Clues to reconstruction of palaeoenvironment and palaeoclimate, Acta Palaeobot., 2016, vol. 56, pp. 3–15.CrossRefGoogle Scholar
  66. 66.
    Wheeler, A. and Götz, A.E., Palynofacies as a tool for high-resolution palaeoenvironmental and palaeoclimatic reconstruction of Gondwanan post-glacial coal deposits: No. 2 Coal Seam, Witbank Coalfield (South Africa), Palaeobiodiv. Palaeoenviron., 2017, vol. 97, pp. 259–271.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.University of Portsmouth, School of Earth and Environmental SciencesPortsmouthUnited Kingdom
  2. 2.Kazan Federal UniversityKazanRussia
  3. 3.University of Queensland, School of Earth SciencesSt. LuciaAustralia

Personalised recommendations