Paleontological Journal

, Volume 51, Issue 12, pp 1293–1374 | Cite as

The stem placental mammal Prokennalestes from the Early Cretaceous of Mongolia

Article

Abstract

All materials, including upper and lower jaw fragments and isolated teeth, of two closely related species of the stem placental mammal Prokennalestes, P. minor Kielan-Jaworowska et Dashzeveg, 1989 (258 specimens) and P. trofimovi Kielan-Jaworowska et Dashzeveg, 1989 (251 specimens), from the type locality of Khovoor (Early Cretaceous of Mongolia) are described. These extensive materials allow for the first time the study of morphological and size variability in an Early Cretaceous mammal. Prokennalestes can be diagnosed by the dental formula I?/4, C1/1, P4–5/5, M3/3, presence of the Meckelian groove, the mandibular foramen positioned dorsally on a prominent longitudinal ridge, presence of the masseteric foramen, double-rooted and premolariform lower canine, submolariform P5 with a large protocone and minute metacone, presence of the preparastyle, cusplike postmetacrista, and cusplike conules with incipient conular cristae on the upper molars, premolariform p5, the protoconid distinctly higher than the metaconid, the paraconid and metaconid connate at the base, transverse protocristid, and presence of distal metacristid on the lower molars. Two Prokennalestes species are reliably distinguished by the tooth dimensions (P. minor is smaller by 20%), the position of the infraorbital foramen (under P4 in P. minor and between P4 and P5 or under P5 in P. trofimovi), the presence of protoconal swelling on P4 (usually absent in P. minor and usually present in P. trofimovi), the ectocingulum extension in M3 (longer in P. minor), position of the posterior end of the mandibular symphysis (under p2 in P. minor, under p2–p3 in P. trofimovi), and by the position of the posterior mental foramen (under p4 in P. minor and under p5 in P. trofimovi). Taking into account considerable morphological differences between the two samples, they are regarded as different species rather than sexual morphs of the same species. Prokennalestes is a basal eutherian mammal similar in phylogenetic position to other stem placentals (Eomaia, Murtoilestes, Bobolestes, Aspanlestes). A more exact phylogenetic position of Prokennalestes can be established based on rigorous phylogenetic analysis including a large set of known stem therian and stem placental taxa.

Keywords

Mammalia Eutheria Placentalia Prokennalestes Early Cretaceous Mongolia Khovoor 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Archibald, J.D., A study of Mammalia and geology across the Cretaceous–Tertiary boundary in Garfield County, Montana, Univ. California Publ. Geol. Sci., 1982, vol. 122, pp. 1–286.Google Scholar
  2. Archibald, J.D. and Averianov, A.O., The Late Cretaceous placental mammal Kulbeckia, J. Vertebr. Paleontol., 2003, vol. 23, no. 2, pp. 404–419.CrossRefGoogle Scholar
  3. Archibald, J.D. and Averianov, A.O., Late Cretaceous asioryctitherian eutherian mammals from Uzbekistan and phylogenetic analysis of Asioryctitheria, Acta Palaeontol. Polon., 2006, vol. 51, no. 2, pp. 351–376.Google Scholar
  4. Archibald, J.D. and Averianov, A.O., Phylogenetic analysis, taxonomic revision, and dental ontogeny of the Cretaceous Zhelestidae (Mammalia, pp. Eutheria), Zool. J. Linnean Soc., 2012, vol. 164, no. 2, pp. 361–426.CrossRefGoogle Scholar
  5. Averianov, A.O., Early Cretaceous “symmetrodont” mammal Gobiotheriodon from Mongolia and the classification of “Symmetrodonta”, Acta Palaeontol. Polon., 2002, vol. 47, no. 4, pp. 705–716.Google Scholar
  6. Averianov, A.O., Taxonomic revision of tribosphenic mammals from the Lower Cretaceous Antlers Formation of Texas and Oklahoma, USA, Proc. Zool. Inst. Russ. Acad. Sci., 2015, vol. 319, no. 2, pp. 141–181.Google Scholar
  7. Averianov, A.O. and Archibald, J.D., Mammals from the mid–Cretaceous Khodzhakul Formation, Kyzylkum Desert, Uzbekistan, Cret. Res., 2005. 26, no. 4, pp. 593–608.CrossRefGoogle Scholar
  8. Averianov, A.O. and Archibald, J.D., New material and reinterpretation of the Late Cretaceous eutherian mammal Paranyctoides from Uzbekistan, Acta Palaeontol. Polon., 2013a, vol. 58, no. 1, pp. 17–23.Google Scholar
  9. Averianov, A.O., and Archibald, J.D., Variation and taxonomy of Asiamerican eutherian mammal Paranyctoides, Can. J. Earth Sci., 2013b, vol. 50, no. 9, pp. 895–903.CrossRefGoogle Scholar
  10. Averianov, A.O. and Archibald, J.D., Evolutionary transition of dental formula in Late Cretaceous eutherian mammals, Sci. Nature, 2015, vol. 102, nos. 9–10, p. 56.CrossRefGoogle Scholar
  11. Averianov, A.O. and Archibald, J.D., New evidence on the stem placental mammal Paranyctoides from the Upper Cretaceous of Uzbekistan, Palaeontol. Polon., 2016, vol. 67, pp. 25–33.Google Scholar
  12. Averianov, A.O., Archibald, J.D., and Dyke, G.J., A new eutherian mammal from the Late Cretaceous of Kazakhstan, Acta Palaeontol. Polon., 2014a, vol. 59, no. 3, pp. 537–542.Google Scholar
  13. Averianov, A.O., Martin, T., and Lopatin, A.V., A new phylogeny for basal Trechnotheria and Cladotheria and affinities of South American endemic Late Cretaceous mammals, Naturwissenschaften, 2013, vol. 100, no. 4, pp. 311–326.CrossRefGoogle Scholar
  14. Averianov, A.O., Martin, T., and Lopatin, A.V., The oldest dryolestid mammal from the Middle Jurassic of Siberia, J. Vertebr. Paleontol., 2014b, vol. 34, no. 4, pp. 924–931.CrossRefGoogle Scholar
  15. Averianov, A.O., Martin, T., Lopatin, A.V., and Krasnolutskii, S.A., Stem therian mammal Amphibetulimus from the Middle Jurassic of Siberia, Paläontol. Z., 2015, vol. 89, no. 2, pp. 197–206.CrossRefGoogle Scholar
  16. Averianov, A.O. and Skutschas, P.P., Phylogenetic relationships within basal tribosphenic mammals, Proc. Zool. Inst. Russ. Acad. Sci., 1999, vol. 281, pp. 55–60.Google Scholar
  17. Averianov, A.O. and Skutschas, P.P., An eutherian mammal from the Early Cretaceous of Russia and biostratigraphy of the Asian Early Cretaceous vertebrate assemblages, Lethaia, 2000, vol. 33, no. 4, pp. 330–340.CrossRefGoogle Scholar
  18. Averianov, A.O. and Skutschas, P.P., A new genus of eutherian mammal from the Early Cretaceous of Transbaikalia, Russia, Acta Palaeontol. Polon., 2001, vol. 46, no. 3, pp. 431–436.Google Scholar
  19. Barsbold, R., Voronin, Y.L., and Zhegallo, V.I., On the work of Soviet–Mongolian Paleontological Expedition in 1969–1970 years, Paleontologicheskii Zh., 1971, no. 2, pp. 139–143.Google Scholar
  20. Beck, R.M.D. and Lee, M.S.Y., Ancient dates or accelerated rates? Morphological clocks and the antiquity of placental mammals, Proc. Royal Soc. B Biol. Sci., 2014, vol. 281, no. 1793, p. 20141278.CrossRefGoogle Scholar
  21. Belyaeva, E.I., Trofimov, B.A., and Reshetov, V.Y., General stages in evolution of late Mesozoic and early Tertiary mammalian faunas in Central Asia, Tr. Sovm. Sovet.-Mongol. Paleontol. Eksped., 1974, vol. 1, pp. 19–45.Google Scholar
  22. Bi, S., Wang, Y., Guan, J., Sheng, X., and Meng, J., Three new Jurassic euharamiyidan species reinforce early divergence of mammals, Nature, 2014, vol. 514, no. 7524, pp. 579–584.CrossRefGoogle Scholar
  23. Bi, S., Zheng, X., Meng, J., Wang, X., Robinson, N., and Davis, B., A new symmetrodont mammal (Trechnotheria, pp. Zhangheotheriidae) from the Early Cretaceous of China and trechnotherian character evolution, Sci. Rep., 2016, vol. 6, p. 26668.CrossRefGoogle Scholar
  24. Bonaparte, J.F. and Rougier, G.W., Mamiferos del Cretacico Inferior de Patagonia, Argentina, in IV Congreso Latinamericano de Paleontologia, 1987, vol. 1, pp. 343–359.Google Scholar
  25. Butler, P.M. and Clemens, W.A., Dental morphology of the Jurassic holotherian mammal Amphitherium, with a discussion of the evolution of mammalian postcanine dental formulae, Palaeontology, 2001, vol. 44, no. 1, pp. 1–20.CrossRefGoogle Scholar
  26. Cifelli, R.L. and Madsen, S.K., Spalacotheriid symmetrodonts (Mammalia) from the medial Cretaceous (upper Albian or lower Cenomanian) Mussentuchit local fauna, Cedar Mountain Formation, Utah, USA, Geodiversitas, 1999, vol. 21, no. 2, pp. 167–214.Google Scholar
  27. Clemens, W.A., Fossil mammals of the type Lance Formation, Wyoming: Part III. Eutheria and summary, Univ. California Publ. Geol. Sci., 1973, vol. 94, pp. 1–102.Google Scholar
  28. Clemens, W.A. and Lillegraven, J.A., New Late Cretaceous, North American advanced therian mammals that fit neither the marsupial nor eutherian molds, Contrib. Geol. Univ. Wyoming Spec. Pap., 1986, vol. 3 (Vertebrates, Phylogeny and Philosophy, Flanagan, K.M. and Lillegraven, J.A., Eds.), pp. 55–86.Google Scholar
  29. Clemens, W.A. and Mills, J.R.E., Review of Peramus tenuirostris Owen (Eupantotheria, Mammalia), Bull. Brit. Mus. Natur. Hist. Geol., 1971, vol. 20, pp. 89–113.Google Scholar
  30. Close, R.A., Davis, B.M., Walsh, S.A., Wolniewicz, A.S., Friedman, M., and Benson, R.B.J., A lower jaw of Palaeoxonodon from the Middle Jurassic of the Isle of Skye, Scotland, sheds new light on the diversity of British stem therians, Palaeontology, 2016, vol. 59, no. 1, pp. 155–169.CrossRefGoogle Scholar
  31. Cohen, J.E., Earliest divergence of stagodontid (Mammalia: Marsupialiformes) feeding strategies from the Late Cretaceous (Turonian) of North America, J. Mamm. Evol., 2017, doi: 10.1007/s10914-017-9382-0Google Scholar
  32. Crompton, A.W., The origin of the tribosphenic molar, Zool. J. the Linnean Soc., 1971, vol. 50 (Early Mammals, Kermack, D.M. and Kermack, K.A., Eds.), suppl. no. 1, pp. 65–87.Google Scholar
  33. Crompton, A.W. and Kielan-Jaworowska, Z., Molar structure and occlusion in Cretaceous therian mammals, in Studies in the Development, Function and Evolution of Teeth, Butler P.M. and Joysey, K.A., Eds., London: Acad. Press, 1978, pp. 249–287.Google Scholar
  34. Dashzeveg, D. and Kielan-Jaworowska, Z., The lower jaw of an aegialodontid mammal from the Early Cretaceous of Mongolia, Zool. J. Linnean Soc., 1984, vol. 82, pp. 217–227.CrossRefGoogle Scholar
  35. Dashzeveg, D., Reshetov, V.Y., and Trofimov, B.A., Early stages of development of mammals in Mongolia, in Main Results of Investigations of the Joint Soviet–Mongol Paleontological Expedition for 1969–1988 years. Abstracts of Reports, Moscow: Paleontol. Inst. Akad. Nauk SSSR, 1989, pp. 5–6.Google Scholar
  36. Davis, B.M., Evolution of the tribosphenic molar pattern in early mammals, with comments on the “dual–origin” hypothesis, J. Mammal. Evol., 2011, vol. 18, no. 4, pp. 227–244.CrossRefGoogle Scholar
  37. Davis, B.M., Micro-computed tomography reveals a diversity of peramuran mammals from the Purbeck Group (Berriasian) of England, Palaeontology, 2012, vol. 55, no. 4, pp. 789–817.CrossRefGoogle Scholar
  38. Davis, B.M., Cifelli, R.L., and Kielan-Jaworowska, Z., Earliest evidence of Deltatheroida (Mammalia: Metatheria) from the Early Cretaceous of North America, in Mammalian Evolutionary Morphology. A Tribute to Frederick S. Szalay, Sargis, E.J. and Dagosto, M., Eds., Springer, 2008, pp. 3–24.CrossRefGoogle Scholar
  39. Ekdale, E.G., Archibald, J.D., and Averianov, A.O., Petrosal bones of placental mammals from the Late Cretaceous of Uzbekistan, Acta Palaeontol. Polon., 2004, vol. 49, no. 1, pp. 161–176.Google Scholar
  40. Fostowicz-Frelik, L., Convergent and parallel evolution in early Glires (Mammalia), in Evolutionary Biology: Self/Nonself Evolution, Species and Complex Traits Evolution, Methods and Concepts, Pontarotti, P., Ed., Springer, 2017, pp. 199–216.Google Scholar
  41. Fox, R.C., Molar structure and function in the Early Cretaceous mammal Pappotherium: Evolutionary implications for Mesozoic Theria, Can. J. Earth Sci., 1975, vol. 12, no. 3, pp. 412–442.CrossRefGoogle Scholar
  42. Fox, R.C., Notes on the dentition and relationships of the Late Cretaceous insectivore Gypsonictops, Can. J. Earth Sci., 1977, vol. 14, no. 8, pp. 1823–1831.CrossRefGoogle Scholar
  43. Gheerbrant, E., Bustylus (Eutheria, Adapisoriculidae) and absence of ascertained marsupials in the Palaeocene of Europe, Terra Nova, 1991, vol. 3, no. 6, pp. 586–592.CrossRefGoogle Scholar
  44. Gill, T., Arrangement of the families of mammals. With analytical tables, Smithsonian Miscellan. Coll., 1872, vol. 11, no. 230, pp. 1–98.Google Scholar
  45. Goswami, A., Prasad, G.V.R., Upchurch, P., Boyer, D.M., Seiffert, E.R., Verma, O., Gheerbrant, E., and Flynn, J.J., A radiation of arboreal basal eutherian mammals beginning in the Late Cretaceous of India, Proc. Nat. Acad. Sci. USA, 2011, vol. 27, no. 108, pp. 16333–16338.CrossRefGoogle Scholar
  46. Han, G. and Meng, J., A new spalacolestine mammal from the Early Cretaceous Jehol Biota and implications for the morphology, phylogeny, and palaeobiology of Laurasian ‘symmetrodontans’, Zool. J. Linnean Soc., 2016, vol. 178, no. 2, pp. 343–380.CrossRefGoogle Scholar
  47. Hu, Y., Fox, R.C., Wang, Y., and Li, C., A new spalacotheriid symmetrodont from the Early Cretaceous of Northeastern China, Am. Mus. Novit., 2005, vol. 3475, pp. 1–20.CrossRefGoogle Scholar
  48. Hu, Y., Meng, J., Li, C., and Wang, Y., New basal eutherian mammal from the Early Cretaceous Jehol biota, Liaoning, China, Proc. Royal Soc. B Biol. Sci., 2010, vol. 277, no. 1679, pp. 229–236.CrossRefGoogle Scholar
  49. Jerzykiewicz, T. and Russell, D.A., Late Mesozoic stratigraphy and vertebrates of the Gobi Basin, Cret. Res., 1991, vol. 12, pp. 345–377.CrossRefGoogle Scholar
  50. Ji, Q., Luo, Z.-X., and Ji, S.-a., A Chinese triconodont mammal and mosaic evolution of mammalian skeleton, Nature, 1999, vol. 398, no. 6725, pp. 326–330.CrossRefGoogle Scholar
  51. Ji, Q., Luo, Z.-X., Yuan, C.-X., Wible, J.R., Zhang, J.-P., and Georg, J.A., The earliest known eutherian mammal, Nature, 2002, vol. 416, no. 6883, pp. 816–822.CrossRefGoogle Scholar
  52. Ji, Q., Luo, Z.-X., Zhang, X., Yuan, C.-X., and Xu, L., Evolutionary development of the middle ear in Mesozoic therian mammals, Science, 2009, vol. 326, no. 5950, pp. 278–281.CrossRefGoogle Scholar
  53. Kalandadze, N.N. and Kurzanov, S.M., Lower Cretaceous localities of terrestrial vertebrates in Mongolia, Tr. Sovm. Sovet.-Mongol. Paleontol. Eksped., 1974, vol. 1, pp. 288–295.Google Scholar
  54. Kalandadze, N.N. and Reshetov, V.Y., Interesting paleontological findings in Mongolia, Priroda, 1971, no. 5, pp. 83–84.Google Scholar
  55. Kemp, T.S., The Origin and Evolution of Mammals, Oxford–New York: Oxford Univ. Press, 2005.Google Scholar
  56. Kermack, K.A., Lees, P.M., and Mussett, F., Aegialodon dawsoni, a new trituberculosectorial tooth from Lower Wealden, Proc. Royal Soc. London Ser. B Biol. Sci., 1965, vol. 162, no. 989, pp. 535–554.CrossRefGoogle Scholar
  57. Kielan-Jaworowska, Z., Evolution of the therian mammals in the Late Cretaceous of Asia. Part III. Postcranial skeleton in Zalambdalestidae, Palaeontol. Polon., 1978, vol. 38, pp. 5–41.Google Scholar
  58. Kielan-Jaworowska, Z., Evolution of the therian mammals in the Late Cretaceous of Asia: Part IV. Skull structure in Kennalestes and Asioryctes, Palaeontol. Polon., 1981, vol. 42, pp. 25–78.Google Scholar
  59. Kielan-Jaworowska, Z., Evolution of the therian mammals in the Late Cretaceous of Asia: Part VII. Synopsis. Palaeontol. Polon., 1984a, vol. 46, pp. 173–183.Google Scholar
  60. Kielan-Jaworowska, Z., Evolution of the therian mammals in the Late Cretaceous of Asia: Part V. Skull structure in Zalambdalestidae, Palaeontol. Polon., 1984b, vol. 46, pp. 107–117.Google Scholar
  61. Kielan-Jaworowska, Z., Bown, T.M., and Lillegraven, J.A., Eutheria, in Mesozoic Mammals: The First Two–Thirds of Mammalian History, Lillegraven, J.A., Kielan-Jaworowska., and Clemens, W.A., Eds., Berkeley: Univ. California Press, 1979, pp. 221–258.Google Scholar
  62. Kielan-Jaworowska, Z., Cifelli, R.L., and Luo, Z.-X., Alleged Cretaceous placental from down under, Lethaia, 1998, vol. 31, no. 3, pp. 267–268.CrossRefGoogle Scholar
  63. Kielan-Jaworowska, Z., Cifelli, R.L., and Luo, Z.-X., Mammals from the Age of Dinosaurs, pp. Origins, Evolution, and Structure, New York, Columbia Univ. Press, 2004.CrossRefGoogle Scholar
  64. Kielan-Jaworowska, Z. and Dashzeveg, D., Eutherian mammals from the Early Cretaceous of Mongolia, Zool. Scr., 1989, vol. 18, pp. 347–355.CrossRefGoogle Scholar
  65. Kielan-Jaworowska, Z., Novacek, M.J., Trofimov, B.A., and Dashzeveg, D., Mammals from the Mesozoic of Mongolia, in The Age of Dinosaurs in Russia and Mongolia, Benton, M.J., Shishkin, M.A., Unwin, D.M., and Kurochkin, E.N., Eds., Cambridge: Cambridge Univ. Press, 2000, pp. 573–626.Google Scholar
  66. Kielan-Jaworowska, Z. and Trofimov, B.A., A new occurrence of Late Cretaceous eutherian mammal Zalambdalestes, Acta Palaeontol. Polon., 1981, vol. 26, pp. 3–7.Google Scholar
  67. Kramarenko, N.N., On the work of the Joint Soviet–Mongolian Paleontological Expedition during the years 1969–1972, Tr. Sovm. Sovet.–Mongol. Paleontol. Eksped., 1974, vol. 1, pp. 9–18.Google Scholar
  68. Krassilov, V.A., Early Cretaceous flora of Mongolia, Palaeontogr. Abt. B Palaeobot., 1982, vol. 181, pp. 1–43.Google Scholar
  69. Krebs, B., Das Skelett von Henkelotherium guimarotae gen. et sp. nov. (Eupantotheria, Mammalia) aus dem Oberen Jura von Portugal, Berl. Geowiss. Abh., Reihe A Geol. Palaeontol., 1991, vol. 133, pp. 1–121.Google Scholar
  70. Kurochkin, E.N., Kalandadze, N.N., and Reshetov, V.Y., First results of the Soviet–Mongolian Paleontological Expedition, Priroda, 1970, no. 4, p. 115.Google Scholar
  71. Kusuhashi, N., Tsutsumi, Y., Saegusa, H., Horie, K., Ikeda, T., Yokoyama, K., and Shiraishi, K., A new Early Cretaceous eutherian mammal from the Sasayama Group, Hyogo, Japan, Proc. Royal Soc. B Biol. Sci., 2013, vol. 280, no. 1759, p. 20130142.CrossRefGoogle Scholar
  72. Li, G. and Luo, Z.-X., A Cretaceous symmetrodont therian with some monotreme-like postcranial features, Nature, 2006, vol. 439, no. 7073, pp. 195–200.CrossRefGoogle Scholar
  73. Lillegraven, J.A., Latest Cretaceous mammals of upper part of Edmonton Formation of Alberta, Canada, and review of marsupial–placental dichotomy in mammalian evolution, Univ. Kansas Paleontol. Contrib., 1969, vol. 50, pp. 1–122.Google Scholar
  74. Linnaeus, C., Systema naturae per regna tria naturae, secundum classes, ordines, genera, species, cum characteribus, differentiis, synonymis, locis, vol. 1: Regnum animale. Editio decima, reformata, Stockholm: Laurentius Salvius, 1758.Google Scholar
  75. Lopatin, A.V. and Averianov, A.O., Revision of a pretribosphenic mammal Arguimus from the Early Cretaceous of Mongolia, Acta Palaeontol. Polon., 2006, vol. 51, no. 2, pp. 339–349.Google Scholar
  76. Lopatin, A.V. and Averianov, A.O., Kielantherium, a basal tribosphenic mammal from the Early Cretaceous of Mongolia, with new data on the aegialodontid dentition, Acta Palaeontol. Polon., 2007, vol. 52, no. 3, pp. 441–446.Google Scholar
  77. Lopatin, A.V. and Averianov, A.O., Early Cretaceous mammals from the Khoboor in Mongolia, in Paleontology of Central Asia: Abstracts of the International Conference on the 40th Anniversary of the Joint Russian–Mongolian Paleontological Expedition. Moscow, November 18–19, 2009, Moscow, 2009, pp. 57–60.Google Scholar
  78. Lopatin, A.V. and Averianov, A.O., Gobiconodon (Mammalia) from the Early Cretaceous of Mongolia and revision of Gobiconodontidae, J. Mammal. Evol., 2015, vol. 22, pp. 17–43.CrossRefGoogle Scholar
  79. Lopatin, A.V., Averianov, A.O., Maschenko, E.N., and Leshchinskiy, S.V., Early Cretaceous mammals of Western Siberia: 3. Zhangheotheriidae, Paleontol. J., 2010, vol. 44, no. 5, pp. 573–583.CrossRefGoogle Scholar
  80. Lopatin, A.V., Maschenko, E.N., Averianov, A.O., Rezvyi, A.S., Skutschas, P.P., and Leshchinskiy, S.V., Early Cretaceous mammals from Western Siberia: 1. Tinodontidae, Paleontol. J., 2005, vol. 39, no. 5, pp. 523–534.Google Scholar
  81. Lucas, S.G., The Psittacosaurus biochron, Early Cretaceous of Asia, Cret. Res., 2006, vol. 27, no. 2, pp. 189–198.CrossRefGoogle Scholar
  82. Luo, Z.-X., Chen, P., Li, G., and Chen, M., A new eutriconodont mammal and evolutionary development in early mammals, Nature, 2007a, vol. 446, no. 7133, pp. 288–293.CrossRefGoogle Scholar
  83. Luo, Z.-X. and Ji, Q., New study on dental and skeletal features of the Cretaceous “symmetrodontan” mammal Zhangheotherium, J. Mammal. Evol., 2005, vol. 12, nos. 3/4, pp. 337–357.CrossRefGoogle Scholar
  84. Luo, Z.-X., Ji, Q., Wible, J.R., and Yuan, C.-X., An Early Cretaceous tribosphenic mammal and metatherian evolution, Science, 2003, vol. 302, no. 5652, pp. 1934–1940.CrossRefGoogle Scholar
  85. Luo, Z.-X., Ji, Q., and Yuan, C.-X., Convergent dental adaptations in pseudo–tribosphenic and tribosphenic mammals, Nature, 2007b, vol. 450, no. 7166, pp. 93–97.CrossRefGoogle Scholar
  86. Luo, Z.-X., Kielan-Jaworowska, Z., and Cifelli, R.L., In quest for a phylogeny of Mesozoic mammals, Acta Palaeontol. Polon., 2002, vol. 47, no. 1, pp. 1–78.Google Scholar
  87. Luo, Z.-X., Meng, Q.-J., Ji, Q., Liu, D., Zhang, Y.-G., and Neander, A.I., Evolutionary development in basal mammaliaforms as revealed by a docodontan, Science, 2015, vol. 347, no. 6223, pp. 760–764.CrossRefGoogle Scholar
  88. Luo, Z.-X. and Wible, J.R., A Late Jurassic digging mammal and early mammalian diversification, Science, 2005, vol. 308, no. 5718, pp. 103–107.CrossRefGoogle Scholar
  89. Luo, Z.-X., Yuan, C.-X., Meng, Q.-J., and Ji, Q., A Jurassic eutherian mammal and divergence of marsupials and placentals, Nature, 2011, vol. 476, no. 7361, pp. 442–445.CrossRefGoogle Scholar
  90. Manz, C.L., Chester, S.G.B., Bloch, J.I., Silcox, M.T., and Sargis, E.J., New partial skeletons of Palaeocene Nyctitheriidae and evaluation of proposed euarchontan affinities, Biol. Lett., 2015, vol. 11, no. 1.Google Scholar
  91. Martin, T., Dryolestidae (Dryolestoidea, Mammalia) aus dem Oberen Jura von Portugal, Abh. Senckenberg. Naturforsch. Gesell., 1999, vol. 550, pp. 1–119.Google Scholar
  92. Martin, T., New stem-line representatives of Zatheria (Mammalia) from the Late Jurassic of Portugal, J. Vertebr. Paleontol., 2002, vol. 22, no. 2, pp. 332–348.CrossRefGoogle Scholar
  93. McKenna, M.C., Towards a phylogenetic classification of the Mammalia, in Phylogeny of the Primates, Luckett, W.P. and Szalay, F.S., New York: Plenum Press, 1975, pp. 21–46.CrossRefGoogle Scholar
  94. McKenna, M.C. and Bell, S.K., Classification of Mammals above the Species Level, New York: Columbia Univ. Press, 1997.Google Scholar
  95. Meng, J., Hu, Y., Wang, Y., Wang, X., and Li, C., A Mesozoic gliding mammal from northeastern China, Nature, 2006, vol. 444, no. 7121, pp. 889–893.CrossRefGoogle Scholar
  96. Meng, J., Wang, Y., and Li, C., Transitional mammalian middle ear from a new Cretaceous Jehol eutriconodont, Nature, 2011, vol. 472, no. 7342, pp. 181–185.CrossRefGoogle Scholar
  97. Montellano-Ballesteros, M., Fox, R.C., and Scott, C.S., Species composition of the Late Cretaceous eutherian mammal Paranyctoides Fox, Can. J. Earth Sci., 2013, vol. 50, no. 7, pp. 693–700.CrossRefGoogle Scholar
  98. Muizon, C., Billet, G., Argot, C., Ladevéze, S., and Goussard, F., Alcidedorbignya inopinata, a basal pantodont (Placentalia, Mammalia) from the early Palaeocene of Bolivia: Anatomy, phylogeny and palaeobiology, Geodiversitas, 2015, vol. 37, no. 4, pp. 397–634.CrossRefGoogle Scholar
  99. Nesov, L.A., New mammals from the Cretaceous of Kyzylkum, Vest. Leningr. Univ., Ser. 7, 1985, no. 17, pp. 8–18.Google Scholar
  100. Nesov, L.A., Archibald, J.D., and Kielan-Jaworowska, Z., Ungulate-like mammals from the Late Cretaceous of Uzbekistan and a phylogenetic analysis of Ungulatomorpha, Bull. Carnegie Mus. Natur. Hist., 1998, vol. 34, pp. 40–88.Google Scholar
  101. Ni, X., Li, Q., Stidham, T.A., Li, L., Lu, X., and Meng, J., A late Paleocene probable metatherian (?deltatheroidan) survivor of the Cretaceous mass extinction, Sci. Rep., 2016, vol. 6, p. 38547.CrossRefGoogle Scholar
  102. Novacek, M.J., The primitive eutherian dental formula, J. Vertebr. Paleontol., 1986a, vol. 6, no. 2, pp. 191–196.CrossRefGoogle Scholar
  103. Novacek, M.J., The skull of leptictid insectivorans and the higher–level classification of eutherian mammals, Bull. Am. Mus. Natur. Hist., 1986b, vol. 183, pp. 1–112.Google Scholar
  104. Novacek, M.J., Rougier, G.W., Wible, J.R., McKenna, M.C., Dashzeveg, D., and Horovitz, I., Epipubic bones in eutherian mammals from the Late Cretaceous of Mongolia, Nature, 1997, vol. 389, no. 6650, pp. 483–486.CrossRefGoogle Scholar
  105. Owen, R., Teeth, in The Cyclopedia of Anatomy and Physiology, Todd, R.B., Ed., London: Sherwood, Gilbert, and Piper, 1837, vol. 4, part 2, pp. 864–935.Google Scholar
  106. Rasmussen, T.E. and Callison, G.L., A new species of triconodont mammal from the Upper Jurassic of Colorado, J. Paleontol., 1981, vol. 55, no. 3, pp. 628–634.Google Scholar
  107. Reshetov, V.Y., Mammals of Central Asia, Priroda, 1989, no. 9, pp. 55–60.Google Scholar
  108. Reshetov, V.Y. and Trofimov, B.A., The main stages of mammal development in Asia, in Paleontology. Stratigraphy. International Geological Congress, 26th Session, Sokolov, B.S., Ed., Moscow: Nauka, 1980, pp. 103–114.Google Scholar
  109. Reshetov, V.Y. and Trofimov, B.A., Review of the study of fossil mammals from the USSR, in Theriology in the USSR, Sokolov, V.E. and Kucheruk, V.V., Eds., Moscow, 1984, pp. 6–29.Google Scholar
  110. Rich, T.H.V., The palaeobiogeography of Mesozoic mammals: A review, Arqui. Mus. Nac., Rio de Janeiro, 2008, vol. 66, no. 1, pp. 231–249.Google Scholar
  111. Rich, T.H.V., Flannery, T.F., Trusler, P., Kool, L., and Klaveren, N.A., and van Vickers-Rich, P., Evidence that monotremes and ausktribosphenids are not sister groups, J. Vertebr. Paleontol., 2002, vol. 22, no. 2, pp. 466–469.CrossRefGoogle Scholar
  112. Rich, T.H.V., Hopson, J.A., Gill, P.G., Trusler, P., Rogers-Davidson, S., Morton, S., Cifelli, R.L., Pickering, D., Kool, L., Siu, K., Burgmann, F.A., Senden, T., Evans, A.R., Wagstaff, B.E., Seegets-Villiers, D., Corfe, I.J., Flannery, T.F., Walker, K., Musser, A.M., Archer, M., Pian, R., and Vickers-Rich, P., The mandible and dentition of the Early Cretaceous monotreme Teinolophos trusleri, Alcheringa, 2016, vol. 40, no. 4, pp. 475–501.CrossRefGoogle Scholar
  113. Rougier, G.W., Apesteguia, S., and Gaetano, L.C., Highly specialized mammalian skulls from the Late Cretaceous of South America, Nature, 2011, vol. 479, no. 7371, pp. 98–102.CrossRefGoogle Scholar
  114. Rougier, G.W., Davis, B.M., and Novacek, M.J., A deltatheroidan mammal from the Upper Cretaceous Baynshiree Formation, eastern Mongolia, Cret. Res., 2015, vol. 52, pp. 167–177.CrossRefGoogle Scholar
  115. Rougier, G.W., Isaji, S., and Manabe, M., An Early Cretaceous mammal from the Kuwajima Formation (Tetori Group), Japan, and a reassessment of triconodont phylogeny, Ann. Carnegie Mus., 2007, vol. 76, no. 2, pp. 73–115.CrossRefGoogle Scholar
  116. Rougier, G.W., Wible, J.R., and Novacek, M.J., Implications of Deltatheridium specimens for early marsupial history, Nature, 1998, vol. 396, no. 6710, pp. 459–463.CrossRefGoogle Scholar
  117. Rougier, G.W., Wible, J.R., and Novacek, M.J., New specimen of Deltatheroides cretacicus (Metatheria, Deltatheroida) from the Late Cretaceous of Mongolia, Bull. Carnegie Mus. Natur. Hist., 2004, vol. 36, pp. 245–266.CrossRefGoogle Scholar
  118. Rowe, T.B., Rich, T.H.V., Vickers-Rich, P., Springer, M.S., and Woodburne, M.O., The oldest platypus and its bearing on divergence timing of the platypus and echidna clades, Proc. Nat. Acad. Sci., 2008, vol. 105, no. 4, pp. 1238–1242.CrossRefGoogle Scholar
  119. Shikama, T., Teilhardosaurus and Endotherium, new Jurassic Reptilia and Mammalia from the Husin coal-field, south Manchuria, Proc. Jap. Acad., 1947, vol. 23, pp. 76–84.Google Scholar
  120. Shuvalov, V.F., On the geological structure and age of the localities Khoboor and Khuren–Dukh, Tr. Sovm. Sovet.- Mongol. Paleontol. Eksped., 1974, vol. 1, pp. 296–313.Google Scholar
  121. Shuvalov, V.F., Stratigraphy of Mesozoic deposits of Cemtral Mongolia, Tr. Sovm. Sovet.-Mongol. Nauchno-Issled. Geol. Eksp., 1975, vol. 13, pp. 50–112.Google Scholar
  122. Shuvalov, V.F., The Cretaceous stratigraphy and palaeobiogeography of Mongolia, in The Age of Dinosaurs in Russia and Mongolia, Benton, M.J., Shishkin, M.A., Unwin, D.M., and Kurochkin, E.N., Eds., Cambridge: Cambridge Univ. Press, 2000, pp. 256–278.Google Scholar
  123. Sigogneau-Russell, D., Dashzeveg, D., and Russell, D.E., Further data on Prokennalestes (Mammalia, Eutheria, inc. sed.) from the Early Cretaceous of Mongolia, Zool.Scr., 1992, vol. 21, pp. 205–209.CrossRefGoogle Scholar
  124. Sigogneau-Russell, D., Hooker, J.J., and Ensom, P.C., The oldest tribosphenic mammal from Laurasia (Purbeck Limestone Group, Berriasian, Cretaceous, UK) and its bearing on the ‘dual origin’ of Tribosphenida, Comptes Rendus l’Acad. Sci., Ser. II, Fasc. A Sci. Terre Planètes, 2001, vol. 333, pp. 141–147.Google Scholar
  125. Simpson, G.G., A Catalogue of the Mesozoic Mammalia in the Geological Department of the British Museum, London: British Mus. Natur. Hist., 1928.Google Scholar
  126. Stucky, R.K. and McKenna, M.C., Mammalia, in The Fossil Record 2, Benton, M.J., Ed., London: Chapman and Hall, 1993, pp. 739–771.Google Scholar
  127. Trofimov, B.A., Mammals from the Lower Cretaceous of Mongolia, in Session Devoted to the Hundred’s Anniversary of the Academichian A.A. Borissiak, Moscow: Paleontol. Inst. Akad. Nauk SSSR, 1972, pp. 65–67.Google Scholar
  128. Trofimov, B.A. and Reshetov, V.Y., Asia as a center of mammals development, Priroda, 1975, no. 8, pp. 32–43.Google Scholar
  129. Wible, J.R., On the cranial osteology of the short–tailed opossum Monodelphis brevicaudata (Didelphidae, Marsupialia), Ann. Carnegie Mus., 2003, vol. 72, no. 3, pp. 137–202.Google Scholar
  130. Wible, J.R., Novacek, M.J., and Rougier, G.W., New data on the skull and dentition in the Mongolian Late Cretaceous eutherian mammal Zalambdalestes, Bull. American Museum of Natural Hist, 2004, vol. 281, pp. 1–144.CrossRefGoogle Scholar
  131. Wible, J.R., Rougier, G.W., and Novacek, M.J., Anatomical evidence for superordinal/ordinal eutherian taxa in the Cretaceous, in The Rise of Placental Mammals: Origins and Relationships of the Major Extant Clades, Rose, K.D. and Archibald, J.D., Eds., Baltimore: Johns Hopkins Univ. Press, 2005.Google Scholar
  132. Wible, J.R., Rougier, G.W., Novacek, M.J., and Asher, R.J., Cretaceous eutherians and Laurasian origin for placental mammals near the K/T boundary, Nature, 2007, vol. 447, no. 7147, pp. 1003–1006.CrossRefGoogle Scholar
  133. Wible, J.R., Rougier, G.W., Novacek, M.J., and Asher, R.J., The eutherian mammal Maelestes gobiensis from the Late Cretaceous of Mongolia and the phylogeny of Cretaceous Eutheria, Bull. Am. Mus. Natur. Hist., 2009, vol. 327, pp. 1–123.CrossRefGoogle Scholar
  134. Wible, J.R., Rougier, G.W., Novacek, M.J., and McKenna, M.C., Earliest eutherian ear region: A petrosal referred to Prokennalestes from the Early Cretaceous of Mongolia, Am. Mus. Novit., 2001, vol. 3322, pp. 1–44.CrossRefGoogle Scholar
  135. Wilson, G.P., Ekdale, E.G., Hoganson, J.W., Calede, J.J., and Linden, A.V., A large carnivorous mammal from the Late Cretaceous and the North American origin of marsupials, Nature Commun., 2016, vol. 7, p. 13734.CrossRefGoogle Scholar
  136. Yabe, H. and Shikama, T., A new Jurassic mammal from south Manchuria, Proc. Imp. Acad. Tokyo, 1938, vol. 14, pp. 353–359.Google Scholar
  137. Yuan, C.-X., Ji, Q., Meng, Q.-J., Tabrum, A.R., and Luo, Z.-X., Earliest evolution of multituberculate mammals revealed by a new Jurassic fossil, Science, 2013, vol. 341, no. 6147, pp. 779–783.CrossRefGoogle Scholar
  138. Zan, S., Wood, C.B., Rougier, G.W., Jin, L., Chen, J., and Schaff, C.R., A new “middle” Cretaceous zalambdalestid mammal, from a new locality in Jilin Province, northeastern China, J. Paleontol. Soc. Korea, 2006, vol. 22, no. 1, pp. 153–172.Google Scholar
  139. Zheng, X., Bi, S., Wang, X., and Meng, J., A new arboreal haramiyid shows the diversity of crown mammals in the Jurassic period, Nature, 2013, vol. 500, no. 7461, pp. 199–202.CrossRefGoogle Scholar
  140. Zhou, C.-F., Wu, S., Martin, T., and Luo, Z.-X., A Jurassic mammaliaform and the earliest mammalian evolutionary adaptations, Nature, 2013, vol. 500, no. 7461, pp. 163–167.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  1. 1.Borissiak Paleontological InstituteRussian Academy of SciencesMoscowRussia
  2. 2.Lomonosov Moscow State UniversityMoscowRussia
  3. 3.Zoological InstituteRussian Academy of SciencesSt. PetersburgRussia
  4. 4.Institute of Geology and Petroleum TechnologyKazan Federal UniversityKazanRussia

Personalised recommendations