Paleontological Journal

, Volume 51, Issue 6, pp 628–642 | Cite as

Early Cretaceous Enantiornithine Birds (Aves, Ornithothoraces) and Establishment of the Ornithuromorpha Morphological Type

  • N. V. ZelenkovEmail author


New data on the taxonomic and morphological diversity of Early Cretaceous Enantiornithes are reviewed. A new hypothesis concerning the phylogenetic position of Pengornithidae is proposed. These birds traditionally treated as primitive enantiornithines may in fact be more closely related to Ornithuromorpha. This phylogenetic placement implies that the fan-shaped tail and modern-type humeral joint was formed once in the early evolution of birds. Hence, the similarity between Pengornithidae and other enantiornithines may be plesiomorphic. The ecology of Early Cretaceous enantiornithines is discussed. The increased mobility of neck in Holbotia is possibly accounted for by the cranioinertial swallowing mechanism, as in modern ratites. The hypotheses of scansorial adaptations in Parapengornis and Fortunguavis are criticized. In addition, the phylogenetic position of Mystiornis is discussed.


Enantiornithes Pengornithidae Ornithuromorpha evolution Early Cretaceous 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Baier, D.B., Gatesy, S.M., and Jenkins, F.A., Jr., A critical ligamentous mechanism in the evolution of avian flight, Nature, 2007, vol. 445, pp. 307–310.CrossRefGoogle Scholar
  2. Baumel, J.J., Functional morphology of the tail apparatus of the pigeon (Columba livia), Adv. Anat. Embryol. Cell Biol., 1988, vol. 110, pp. 1–115.CrossRefGoogle Scholar
  3. Bell, A. and Chiappe, L.M., Statistical approach for inferring ecology of Mesozoic birds, J. Syst. Palaeontol., 2011, vol. 9, pp. 119–133.CrossRefGoogle Scholar
  4. Brodkorb, P., Discovery of a Cretaceous bird, apparently ancestral to the orders Coraciiformes and Piciformes (Aves: Carinatae), Smithson. Contrib. Paleobiol., 1976, no. 27, pp. 67–73.Google Scholar
  5. Carvalho, I.S., Novas, F.E., Agnolin, F., et al., A Mesozoic bird from Gondwana preserving feathers, Nat. Commun., 2015a, vol. 6, p. 7141.Google Scholar
  6. Carvalho, I.S., Novas, F.E., Agnolin, F.L., et al., A new genus and species of enantiornithine bird from the Early Cretaceous of Brazil, Brazil. J. Geol., 2015b, vol. 45, pp. 161–171.Google Scholar
  7. Cau, A., Brougham, T., and Naish, D., The phylogenetic affinities of the bizarre Late Cretaceous Romanian theropod Balaur bondoc (Dinosauria, Maniraptora): Dromaeosaurid or flightless bird?, Peer. J., 2015, vol. 3, p. e1032. doi 10.7717/peerj.1032Google Scholar
  8. Chan, N.R., Dyke, G.J., and Benton, M.J., Primary feather lengths may not be important for inferring the flight styles of Mesozoic birds, Lethaia, 2013, vol. 46, pp. 146–153.CrossRefGoogle Scholar
  9. Chiappe, L.M., Enantiornithine (Aves) tarsometatarsi from the Cretaceous Lecho Formation of northwestern Argentina, Am. Mus. Novit., 1993, no. 3083, pp. 1–27.Google Scholar
  10. Chiappe, L.M., The first 85 million years of avian evolution, Nature, 1995, vol. 378, pp. 349–355.CrossRefGoogle Scholar
  11. Chiappe, L.M., Basal birds phylogeny: Problems and solutions, in Mesozoic Birds: Above the Heads of Dinosaurs, Chiappe, L.M. and Witmer, L.M., Eds., Berkeley, Los Angeles–Leningrad: Univ. California Press, 2002, pp. 448–472.Google Scholar
  12. Chiappe, L.M., Glorified Dinosaurs: The Origin and Early Evolution of Birds, Hoboken, New Jersey: John Wiley and Sons, 2007.Google Scholar
  13. Chiappe, L.M. and Calvo, J.O., Neuquenornis volans, a new Late Cretaceous bird (Enantiornithes: Avisauridae) from Patagonia, Argentina, J. Vertebr. Paleontol., 1994, vol. 14, pp. 230–246.CrossRefGoogle Scholar
  14. Chiappe, L.M., Ji, S.-A., Ji, Q., and Norell, M.A., Anatomy and systematics of the Confuciusornithidae (Theropoda: Aves) from the Late Mesozoic of northeastern China, Bull. Am. Mus. Natur. Hist., 1999, no. 242, pp. 1–89.Google Scholar
  15. Chiappe, L.M. and Lacasa-Ruiz, A., Noguerornis gonzalezi (Aves: Ornithothoraces) from the Early Cretaceous of Spain, in Mesozoic Birds: Above the Heads of Dinosaurs, Chiappe, L.M. and Witmer, L.M., Eds., Berkeley, Los Angeles–Leningrad: Univ. California Press, 2002, pp. 448–472.Google Scholar
  16. Chiappe, L.M. and Meng, Q., Birds of Stone: Chinese Avian Fossils from the Age of Dinosaurs, Baltimore: Johns Hopkins Univ. Press, 2016.Google Scholar
  17. Chiappe, L.M. and Walker, C.A., Skeletal morphology and systematics of the Cretaceous Euenantiornithes (Ornithothoraces: Enantiornithes), in Mesozoic Birds: Above the Heads of Dinosaurs, Chiappe, L.M. and Witmer, L.M., Eds., Berkeley, Los Angeles–Leningrad: Univ. California Press, 2002, pp. 240–267.Google Scholar
  18. Clarke, J.A. and Norell, M.A., The morphology and phylogenetic position of Apsaravis ukhaana from the Late Cretaceous of Mongolia, Am. Mus. Novit., 2002, no. 3387, pp. 1–46.CrossRefGoogle Scholar
  19. Dalla Vecchia, F.M. and Chiappe, L.M., First avian skeleton from the Mesozoic of northern Gondwana, J. Vertebr. Paleontol., 2002, vol. 22, pp. 856–860.CrossRefGoogle Scholar
  20. Dyke, G.J. and Nudds, R.L., The fossil record and limb disparity of Enantiornithines, the dominant flying birds of the Cretaceous, Lethaia, 2009, vol. 42, pp. 248–254.CrossRefGoogle Scholar
  21. Dzerzhinsky, F.Ya., Sravnitel’naya anatomiya pozvonochnykh zhivotnykh (Comparative Anatomy of Vertebrates), Moscow: Aspekt-Press, 2005.Google Scholar
  22. Elzanowski, A., Preliminary note on the palaeognathous bird from the Upper Cretaceous of Mongolia, Paleontol. Polon., 1974, vol. 30, pp. 103–109.Google Scholar
  23. Elzanowski, A., Skulls of Gobipteryx (Aves) from the Upper Cretaceous of Mongolia, Acta Palaeontol. Polon., 1977, vol. 37, pp. 153–165.Google Scholar
  24. Feduccia, A., Evolutionary trends in the neotropical ovenbirds and woodhewers, Ornithol. Monogr., 1973, vol. 13, pp. 1–69.Google Scholar
  25. Feduccia, A., The Origin and Evolution of Birds, New Heaven–Leningrad: Yale Univ. Press, 1999.Google Scholar
  26. Forster, C.A., Chiappe, L.M., Krause, D.W., and Sampson, S.D., The first Cretaceous bird from Madagascar, Nature, 1996, vol. 382, pp. 532–534.CrossRefGoogle Scholar
  27. Gussekloo, S.W.S. and Bout, R.G., The kinematics of feeding and drinking in palaeognathous birds in relation to cranial morphology, J. Exp. Biol., 2005a, vol. 208, pp. 3395–3407.Google Scholar
  28. Gussekloo, S.W.S. and Bout, R.G., Cranial kinesis in palaeognathous birds, J. Exp. Biol., 2005b, vol. 208, pp. 3409–3419.Google Scholar
  29. Heilmann, G., The Origin of Birds, New York: Dover Publ. Inc. 1926.Google Scholar
  30. Hieronymus, T.L., Qualitative skeletal correlates of wing shape in extant birds (Aves: Neoaves), BMC Evol. Biol., 2015, vol. 15, p. 30. doi 10.1186/s12862-015-0303-7CrossRefGoogle Scholar
  31. Hou, L., Chiappe, L.M., Zhang, F., and Chuong, C.-M., New Early Cretaceous fossil from China documents a novel trophic specialization for Mesozoic birds, Naturwissenschaften, 2004, vol. 91, pp. 22–25.CrossRefGoogle Scholar
  32. Hu, H., O’Connor, J.K., and Zhou, Z., A new species of Pengornithidae (Aves: Enantiornithes) from the Lower Cretaceous of China suggests a specialized scansorial habitat previously unknown in early birds, PLoS One, 2015, vol. 10, p. e0126791.Google Scholar
  33. Hu, H., Zhou, Z., and O’Connor, J.K., A subadult specimen of Pengornis and character evolution in Enantiornithes, Vertebr. PalAsiat, 2014, vol. 52, pp. 77–97.Google Scholar
  34. Huang, J., Wang, X., Hu, Y., et al., A new ornithurine from the Early Cretaceous of China sheds light on the evolution of early ecological and cranial diversity in birds, Peer J., 2016, vol. 4, p. e1765.Google Scholar
  35. Kurochkin, E.N., A new avian order from the Lower Cretaceous of Mongolia, Dokl. Akad. Nauk SSSR, 1982, vol. 262, pp. 425–455.Google Scholar
  36. Kurochkin, E.N., Synopsis of Mesozoic birds and early evolution of class Aves, Archaeopteryx, 1995, vol. 13, pp. 47–66.Google Scholar
  37. Kurochkin, E.N., A new enantiornithid of the Mongolian Late Cretaceous, and a general appraisal of the infraclass Enantiornithes (Aves), Moscow: Paleontol. Inst. Ross. Akad. Nauk, 1996, spec. issue, 00. 1–60.Google Scholar
  38. Kurochkin, E.N., New ideas concerning the origin and early evolution of birds, in Dostizheniya i problemy ornitologii Severnoi Evrazii na rubezhe vekov. Trudy Mezhdunarodnoi konferentsii “Aktual’nye problemy izucheniya i okhrany ptits Vostochnoi Evropy i Severnoi Azii” (International Conference on the Achievements and Problems of Ornithology of Northern Eurasia at the Boundary of Centuries: Actual Problems of Studying and Protection of Birds of Eastern Europe and Northern Asia), Kurochkin, E.N. and Rakhimov, I.I., Eds., Kazan: Magarif, 2001, pp. 68–96.Google Scholar
  39. Kurochkin, E.N., Parallel evolution of theropod dinosaurs and birds, Entomol. Rev., 2006, vol. 86, no. suppl. 1, pp. 45–58.Google Scholar
  40. Kurochkin, E.N., The origin of birds, in Iskopaemye reptilii i ptitsy. Chast’ 3 (Fossil Reptiles and Birds: Part 3), Kurochkin, E.N., Lopatin, A.V., and Zelenkov, N.V., Eds., Moscow: GEOS, 2015, pp. 46–60.Google Scholar
  41. Kurochkin, E.N. and Bogdanovich, I.A., Origin of feathered flight, Paleontol. J., 2010, vol. 44, pp. 1570–1588.CrossRefGoogle Scholar
  42. Kurochkin, E.N. and Molnar, R.E., New material of enantiornithine birds from the Early Cretaceous of Australia, Alcheringa, 1997, vol. 21, pp. 291–297.CrossRefGoogle Scholar
  43. Kurochkin, E.N., Zelenkov, N.V., Averianov, A.O., and Leshchinskiy, S.V., A new taxon of birds (Aves) from the Early Cretaceous of Western Siberia, Russia, J. Syst. Palaeontol., 2011, vol. 9, pp. 109–117.CrossRefGoogle Scholar
  44. Lacasa Ruiz, A., Nuevo genero de ave dosil del Yacimiento Neocomiense del Montsec (Provincia de Lerida, Espana), Estud. Geol., 1989, vol. 45, pp. 417–425.Google Scholar
  45. Martin, L.D., The origin and early radiation of birds, in Perspectives in Ornithology, Brush, A.H. and Clark, G.A., Eds., Cambridge: Cambridge Univ. Press, 1983, pp. 291–338.CrossRefGoogle Scholar
  46. Martin, L.D., The Enantiornithes: Terrestrial birds of the Cretaceous, Cour. Forschungs. Senckenb, 1995, no. 181, pp. 23–36.Google Scholar
  47. Martin, L.D., The other half of avian evolution: Cyril walker’s contribution, J. Syst. Palaeontol., 2011, vol. 9, pp. 3–8.CrossRefGoogle Scholar
  48. Mayr, G., A new Eocene Chascacocolius-like mousebird (Aves: Coliiformes) with a remarkable gaping adaptation, Org. Divers. EV, 2005, vol. 5, pp. 167–171.CrossRefGoogle Scholar
  49. Mayr, G., Avian Evolution: The Fossil Record of Birds and Its Paleobiological Significance, Chichester: J. Wiley and Sons, 2017.Google Scholar
  50. Mitchell, J.S. and Makovicky, P.J., Low ecological disparity in Early Cretaceous birds, Proc. Roy. Soc. B: Biol. Sci., 2014, vol. 281, pp. 20140608.CrossRefGoogle Scholar
  51. Molnar, R.E., An enantiornithine bird from the Lower Cretaceous of Queensland, Australia, Nature, 1986, vol. 322, pp. 736–738.CrossRefGoogle Scholar
  52. Morschhauser, E.M., Varricchio, D.J., Gao, C., et al., Anatomy of the Early Cretaceous bird Rapaxavis pani, a new species from Liaoning Provence, China, J. Vertebr. Paleontol., 2009, vol. 29, pp. 545–554.CrossRefGoogle Scholar
  53. Navalón, G., Marugán-Lobón, J., Chiappe, L.M., et al., Soft-tissue and dermal arrangement in the wing of an Early Cretaceous bird: Implications for the evolution of avian flight, Sci. Rep., 2015, vol. 5, p. 14864.CrossRefGoogle Scholar
  54. O’Connor, J.K., A Systematic Review of Enantiornithes (Aves: Ornithothoraces), Unpublished PhD, Univ. South. California, 2009, pp. 1–586.Google Scholar
  55. O’Connor, J.K., Averianov, A.O., and Zelenkov, N.V., A confuciusornithiform (Aves, Pygostylia)-like tarsometatarsus from the Early Cretaceous of Siberia and a discussion of the evolution of avian hind limb musculature, J. Vertebr. Paleontol., 2014, vol. 34, pp. 647–656.Google Scholar
  56. O’Connor, J.K. and Chiappe, L., A revision of enantiornithine (Aves: Ornithothoraces) skull morphology, J. Syst. Palaeontol., 2011, vol. 9, pp. 135–157.CrossRefGoogle Scholar
  57. O’Connor, J.K., Chiappe, L.M., and Bell, A., Pre-modern birds: Avian divergences in the Mesozoic, in Living Dinosaurs: The Evolutionary History of Modern Birds, Dyke, G.J. and Kaiser, G., Eds., Leningrad: John Wiley and Sons, 2011a, pp. 39–114.CrossRefGoogle Scholar
  58. O’Connor, J.K., Chiappe, L.M., Gao, C., and Zhao, B., Anatomy of the Early Cretaceous enantiornithine bird Rapaxavis pani, Acta Palaeontol. Polon., 2011b, vol. 56, pp. 463–475.Google Scholar
  59. O’Connor, J.K., Wang, X., Chiappe, L.M., et al., Phylogenetic support for a specialized clade of Cretaceous enantiornithine birds with information from a new species, J. Vertebr. Paleontol., 2009, vol. 29, pp. 188–204.CrossRefGoogle Scholar
  60. O’Connor, J.K., Wang, M., and Hu, H., A new ornithuromorph (Aves) with an elongate rostrum from the Jehol Biota, and the early evolution of rostralization in birds, J. Syst. Palaeontol., 2016a, vol. 14, pp. 939–948.Google Scholar
  61. O’Connor, J.K., Wang, X., Zheng, X., et al., An enantiornithine with a fan-shaped tail, and the evolution of the rectricial complex in early birds, Curr. Biol., 2016b, vol. 26, pp. 114–119.Google Scholar
  62. O’Connor, J.K., Zhang, Y., Chiappe, L.M., et al., A new enantiornithine from the Yixian Formation with the first recognized avian enamel specialization, J. Vertebr. Paleontol., 2013, vol. 33, pp. 1–12.CrossRefGoogle Scholar
  63. O’Connor, J.K., Zheng, X.T., Sullivan, C., et al., Evolution and functional significance of derived sternal ossification patterns in ornithothoracine birds, J. Evol. Biol., 2015, vol. 28, pp. 1550–1567.CrossRefGoogle Scholar
  64. O’Connor, J.K. and Zhou, Z., Early evolution of the biological bird: Perspectives from new fossil discoveries in China, J. Ornithol., 2015, vol. 156, pp. S333–S342.Google Scholar
  65. O’Connor, J.K., Zhou, Z., and Zhang, F., A reappraisal of Boluochia zhengi (Aves: Enantiornithes) and a discussion of intraclade diversity in the Jehol Avifauna, China, J. Syst. Palaeontol., 2011c, vol. 9, pp. 51–63.Google Scholar
  66. Pan, Y., Sha, J., Zhou, Z., and Fursich, F.T., The Jehol Biota: Definition and distribution of exceptionally preserved relicts of a continental Early Cretaceous ecosystem, Cret. Res., 2013, vol. 44, pp. 30–38.CrossRefGoogle Scholar
  67. Richardson, F., Adaptive modifications for tree-trunk foraging in birds, Univ. California Publ. Zool., 1942, vol. 46, pp. 317–368.Google Scholar
  68. Rüger, A., Funktionell-anatomische Untersuchungen an Spechten, Z. Wiss. Zool., 1972, no. 184, pp. 63–163.Google Scholar
  69. Sanz, J.L. and Bonaparte, J.F., A new order of birds from the Lower Cretaceous of Spain, Natur. Hist. Mus. Los Angeles Cty, Sci. Ser., 1992, no. 36, pp. 39–49.Google Scholar
  70. Sanz, J.L., Bonaparte, J.F., and Lacasa, A., Unusual Early Cretaceous birds from Spain, Nature, 1988, vol. 331, pp. 433–435.CrossRefGoogle Scholar
  71. Sanz, J.L., Chiappe, L.M., Perez-Moreno, B.P., et al., An Early Cretaceous bird from Spain and its implications for the evolution of avian flight, Nature, 1996, vol. 382, pp. 442–445.CrossRefGoogle Scholar
  72. Sanz, J.L., Chiappe, L.M., Perez-Moreno, B.P., et al., A nestling bird from the Lower Cretaceous of Spain: Implications for avian skull and neck evolution, Science, 1997, vol. 276, pp. 1543–1546.CrossRefGoogle Scholar
  73. Sereno, P.C. and Rao, Ch., Early evolution of avian flight and perching: New evidence from the Lower Cretaceous of China, Science, 1992, vol. 255, pp. 845–848.CrossRefGoogle Scholar
  74. Stegmann, B.K., On some features of the skeleton structure in pigeons and sandgrouses, in Ornitologiya, Moscow: Mosk. Gos. Univ., 1958, pp. 189–206.Google Scholar
  75. Tomlinson, C.A., Feeding in palaeognathous birds, in Feeding: Form, Function, and Evolution in Tetrapod Vertebrates, Schwenk, K., Ed., San Diego: Acad. Press, 2000, pp. 359–394.CrossRefGoogle Scholar
  76. Turner, A.H., Makovicky, P.J., and Norell, M.A., A review of dromaeosaurid systematics and paravian phylogeny, Bull. Am. Mus. Natur. Hist., 2012, no. 371, pp. 1–206.CrossRefGoogle Scholar
  77. Walker, C.A., New subclass of birds from the Cretaceous of South America, Nature, 1981, vol. 292, pp. 51–53.CrossRefGoogle Scholar
  78. Walker, C.A. and Dyke, G.J., Euenantiornithine birds from the Late Cretaceous of El Brete (Argentina), Irish J. Earth Sci., 2010, vol. 27, pp. 15–62.CrossRefGoogle Scholar
  79. Wang, M. and Liu, D., Taxonomical reappraisal of Cathayornithidae (Aves: Enantiornithes), J. Syst. Palaeontol., 2016, vol. 14, pp. 29–47.CrossRefGoogle Scholar
  80. Wang, M., O’Connor, J.K., Pan, Y., and Zhou, Z., A bizarre Early Cretaceous enantiornithine bird with unique crural feathers and an ornithuromorph ploughshaped pygostyle, Nat. Commun., 2017, vol. 8: 14141.Google Scholar
  81. Wang, M., O’Connor, J.K., and Zhou, Z., A new robust enantiornithine bird from the Lower Cretaceous of China with scansorial adaptations, J. Vertebr. Paleontol., 2014a, vol. 34, pp. 657–671.Google Scholar
  82. Wang, M., Zhou, Z., O’Connor, J.K., and Zelenkov, N.V., A new diverse enantiornithine family (Bohaiornithidae fam. nov.) from the Lower Cretaceous of China with information from two new species, Vertebr. PalAsiat., 2014b, vol. 52, pp. 31–76.Google Scholar
  83. Wang, M., Zhou, Z., and Sullivan, C., A fish-eating enantiornithine bird from the Early Cretaceous of China provides evidence of modern avian digestive features, Curr. Biol., 2016, vol. 26, pp. 1170–1176.CrossRefGoogle Scholar
  84. Wang, W. and O’Connor, J.K., Morphological coevolution of the pygostyle and tail feathers in Early Cretaceous birds, Vertebr. PalAsiat., 2017, vol. 55, pp. 1–26.Google Scholar
  85. Wang, X. and Clarke, J.A., Phylogeny and forelimb disparity in waterbirds, Evolution, 2014, vol. 68, pp. 2847–2860.CrossRefGoogle Scholar
  86. Wang, X., McGowan, A.J., and Dyke, G.J., Avian wing proportions and flight styles: First step towards predicting the flight modes of Mesozoic birds, PLoS One, 2011, vol. 6: e28672.Google Scholar
  87. Wang, X., O’Connor, J.K., Zheng, X., et al., Insights into the evolution of rachis dominated tail feathers from a new basal enantiornithine (Aves: Ornithothoraces), Biol. J. Linn. Soc., 2014, vol. 113, pp. 805–819.CrossRefGoogle Scholar
  88. Yudin, K.A., Filogeniya i klassifikatsiya rzhankoobraznykh (Phylogeny and Classification of Charadriiforms), Leningrad: Akad. Nauk SSSR, 1965.Google Scholar
  89. Yudin, K.A., Biological significance and evolution of the skull kinesis in birds, Tr. Zool. Inst. Akad. Nauk SSSR, 1970, vol. 47, pp. 32–66.Google Scholar
  90. Zeffer, A., Johansson, L.C., and Marmebro, Å., Functional correlation between habitat use and leg morphology in birds (Aves), Biol. J. Linn. Soc., 2003, vol. 79, pp. 461–484.CrossRefGoogle Scholar
  91. Zelenkov, N.V., The structure and probable mechanism of the evolutionary formation of the foot in piciform birds (Aves: Piciformes), Paleontol. J., 2007, vol. 41, pp. 290–297.CrossRefGoogle Scholar
  92. Zelenkov, N.V. Stable morphological types and mosaicism in the macroevolution of birds, Biol. Bull. Reviews, 2016, vol. 6, pp. 208–218.CrossRefGoogle Scholar
  93. Zelenkov, N.V. and Averianov, A.O., A historical specimen of enantiornithine bird from the Early Cretaceous of Mongolia representing a new taxon with a specialized neck morphology, J. Syst. Palaeontol., 2016, vol. 14, pp. 319–338.CrossRefGoogle Scholar
  94. Zelenkov, N.V. and Dzerzhinsky, F.Ya., The hind limb structure and climbing in woodpeckers, Zool. Zh., 2006, vol. 85, pp. 395–410.Google Scholar
  95. Zelenkov, N.V. and Kurochkin, E.N., Class Aves, Iskopaemye reptilii i ptitsy. Chast’ 3 (Fossil Reptiles and Birds: Part 3), Kurochkin, E.N., Lopatin, A.V., and Zelenkov, N.V., Eds., Moscow: GEOS, 2015, pp. 86–290.Google Scholar
  96. Zhang, F. and Zhou, Z., A primitive enantiornithine bird and the origin of feathers, Science, 2000, vol. 290, pp. 1955–1959.CrossRefGoogle Scholar
  97. Zhang, F., Zhou, Z., Hou, L., and Gu, G., Early diversification of birds: Evidence from a new opposite bird, Chin. Sci. Bull., 2001, vol. 46, pp. 945–949.CrossRefGoogle Scholar
  98. Zhang, Z., Chiappe, L.M., Han, G., and Chinsamy, A., A large bird from the Early Cretaceous of China: New information on the skull of enantiornithines, J. Vertebr. Paleontol., 2013, vol. 33, pp. 1176–1189.CrossRefGoogle Scholar
  99. Zheng, X., Wang, X., O’Connor, J.K., and Zhou, Z., Insight into the early evolution of the avian sternum from juvenile enantiornithines, Nat. Commun., 2012, vol. 3, p. 1116.CrossRefGoogle Scholar
  100. Zhou, S., Zhou, Z., and O’Connor, J.K., A new basal beaked ornithurine bird from the Lower Cretaceous of western Liaoning, China, Vertebr. PalAsiat., 2012, vol. 50, pp. 9–24.Google Scholar
  101. Zhou, S., Zhou, Z., and O’Connor, J.K., Anatomy of the basal ornithuromorph bird archaeorhynchus spathula from the Early Cretaceous of Liaoning, China, J. Vertebr. Paleontol., 2013, vol. 33, pp. 141–152.CrossRefGoogle Scholar
  102. Zhou, Z., The discovery of Early Cretaceous birds in China, Cour. Forschungs. Senckenb., 1995, vol. 181, pp. 9–22.Google Scholar
  103. Zhou, Z., The origin and early evolution of birds: Discoveries, disputes, and perspectives from fossil evidence, Naturwissenschaften, 2004, vol. 91, pp. 455–471.CrossRefGoogle Scholar
  104. Zhou, Z., Clarke, J.A., and Zhang, F., Insight into diversity, body size and morphological evolution from the largest Early Cretaceous enantiornithine bird, J. Anat., 2008, vol. 212, pp. 565–577.CrossRefGoogle Scholar
  105. Zhou, Z., Jin, F., and Zhang, J., Preliminary report on a Mesozoic bird from Liaoning, China, Chin. Sci. Bull., 1992, vol. 37, pp. 1365–1368.Google Scholar
  106. Zhou, Z., Zhang, F., and Hou, L., Aves, in The Chinese Fossil Reptiles and Their Kin, 2nd ed., Li, J., Wu, X., and Zhang, F., Eds., Beijing: Sci. Press, 2008, pp. 337–378.Google Scholar
  107. Zusi, R.L., A functional and evolutionary analysis of rhynchokinesis in birds, Smithson. Contrib. Zool., 1984, no. 395, pp. 1–40.Google Scholar
  108. Zusi, R.L., Patterns of diversity in the avian skull, in The Skull, Haneken, J. and Hall, B.K., Eds., 1993, vol. 2, pp. 391–437.Google Scholar
  109. Zusi, R.L., Introduction to the skeleton of hummingbirds (Aves: Apodiformes, Trochilidae) in functional and phylogenetic contexts, Ornithol. Monogr., 2013, vol. 77, pp. 1–94.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  1. 1.Borissiak Paleontological InstituteRussian Academy of SciencesMoscowRussia

Personalised recommendations