Advertisement

Paleontological Journal

, Volume 51, Issue 6, pp 576–599 | Cite as

Russia–UK Collaboration in Paleontology: Past, Present, and Future

  • M. J. Benton
  • D. E. G. Briggs
  • J. A. Clack
  • D. Edwards
  • J. Galway-Witham
  • C. B. Stringer
  • S. T. Turvey
Article
  • 112 Downloads

Abstract

There is a long history of collaboration between Russia and the United Kingdom in paleontology. This began, arguably, in 1821, with the seminal work by William Fox-Strangways, who produced a geological map of the area around St Petersburg. Most famously, Roderick Murchison carried out extensive surveying and observations throughout European Russia in 1840 and 1841, and published a major monograph on geology and paleontology of European Russia in 1845. Since then, and continuing today, there have been many fruitful collaborations on Precambrian life, Paleozoic marine organisms, terrestrialization of plants and vertebrates, the Permian–Triassic mass extinction, fossil mammals, human evolution, and conservation paleobiology.

Keywords

Paleontology Russian–United Kingdon collaboration 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahlberg, P.E., Tetrapod or near-tetrapod fossils from the Upper Devonian of Scotland, Nature, 1991, vol. 354, pp. 298–301.CrossRefGoogle Scholar
  2. Ahlberg, P.E., Beznosov, P., Lukševičs, E., and Clack, J.A., A very primitive tetrapod from the earliest Famennian of South Timan, Russia, J. Vertebr. Paleontol., 2011, supp. vol. 2, p. 60A.Google Scholar
  3. Alekseyev, A.A., Lebedev, O.A., Barskov, I.S., Kononova, L.I., and Chizhova, V.A., On the stratigraphic position of the Famennian and Tournaisian fossil vertebrate beds in Andreyevka, Tula Region, Central Russia, Proc. Geol. Ass., 1994, vol. 105, pp. 41–52.CrossRefGoogle Scholar
  4. Algeo, T.J., and Twitchett, R.J., Anomalous Early Triassic sediment fluxes due to elevated weathering rates and their biological consequences, Geology, 2010, vol. 38, pp. 1023–1026.CrossRefGoogle Scholar
  5. Ananiev, A.R., Plants, in Atlas rukovodyashchikh form iskopaemykh fauny i flory Zapadnoi Sibiri (Atlas of Guide Forms of Fossil Fauna and Flora of Western Siberia 1955), vol. 1: Devonskaya sistema (The Devonian System), Moscow: Gosgeoltekhizdat, 1955, pp. 279–296.Google Scholar
  6. Ananiev, A.R., Paleontological characteristics of the Devonian of the Sayan–Altai Mountain Region: Plants, Tr. Sib. Nauchno–Issled. Inst. Geol. Geofiz. Miner. Syr’ya, 1960, vol. 20 (Paleozoic Biostratigraphy of the Sayan–Altai Mountain Region: Middle Paleozoic), pp. 578–588.Google Scholar
  7. Ananiev, A.R., and Stepanov, S.A., A discovery of the psilophyte flora in the Lower Devonian of the Salair Ridge (Western Siberia), Tr. Tomsk. Gos. Univ. Ser. Geol., 1969, vol. 203, pp. 13–28.Google Scholar
  8. Anderson, J.S., Smithson, T.R., Mansky, C.F., Meyer, T., and Clack, J.A., A diverse tetrapod fauna at the base of Romer’s Gap, PLoS One, 2015, vol. 10, part 4, art. e0125446. doi 10.1371/journal.pone.0125446Google Scholar
  9. Andrews, P., Cook, J., Currant, A.P., and Stringer, C.B., Eds., Westbury Cave—The Natural History Museum Excavations 1976–1984, Bristol: Western Acad. Spec. Press, 1999.Google Scholar
  10. Arsuaga, J.L., Martínez, I., Arnold, L.J., et al., Neanderthal roots: Cranial and chronological evidence from Sima de los Huesos, Science, 2014, vol. 344, pp. 1358–1363.CrossRefGoogle Scholar
  11. Arzarello, M., Pavia, G., Peretto, C., et al., Evidence of an Early Pleistocene hominin presence at Pirro Nord (Apricena, Foggia, southern Italy): P13 site, Quatern. Int., 2012, vol. 267, pp. 56–61.Google Scholar
  12. Ashton, N., Lewis, S.G., De Groote, I., et al., Hominin footprints from Early Pleistocene deposits at Happisburgh, UK, PLoS ONE, 2014, vol. 9, no. 2, p. e88329. doi 10.1371/journal.pone.0088329CrossRefGoogle Scholar
  13. Ashton, N., Lewis, S.G., Parfitt, S.A., et al., Handaxe and non-handaxe assemblages during Marine Isotope Stage 11 in northern Europe: Recent investigations at Barnham, Suffolk, UK, J. Quater. Sci., 2016, vol. 31, pp. 837–843.Google Scholar
  14. Ashton, N., Lewis, S.G., and Stringer, C.B., Eds., The Ancient Human Occupation of Britain, Devel. Quarter. Sci. London, 2014, vol. 14, pp. 1–322.Google Scholar
  15. Balmford, A., Extinction filters and current resilience: The significance for past selection pressures for conservation biology. Trends Ecol. Evol., 1996, vol. 11, pp. 193–196.CrossRefGoogle Scholar
  16. Barnes, I., Shapiro, B., Lister, A., et al., Genetic structure and extinction of the woolly mammoth Mammuthus primigenius, Curr. Biol., 2007, vol. 17, pp. 1072–1075.CrossRefGoogle Scholar
  17. Barnosky, A.D., Hadly, E.A., Gonzalez, P., et al., Merging paleobiology with conservation biology to guide the future of terrestrial ecosystems, Science, 2017, vol. 355, pp. 1–10.CrossRefGoogle Scholar
  18. Bengtson, S., Mineralized skeletons and early animal evolution, in Evolving Form and Function: Fossils and Development: Proceedings of a Symposium Honoring Adolf Seilacher for His Contributions to Paleontology, in Celebration of His 80th birthday, Briggs, D.E.G., Ed., New Haven: Yale Peabody Mus. Natur. Hist., 2005, pp. 101–124.Google Scholar
  19. Bengtson, S., and Zhao, Y., Fossilized metazoan embryos from the earliest Cambrian, Science, 1997, vol. 277, pp. 1645–1648.CrossRefGoogle Scholar
  20. Benton, M.J., The end-Permian mass extinction—events on land in Russia, Proc. Geol. Ass., 2008, vol. 119, pp. 119–136.CrossRefGoogle Scholar
  21. Benton, M.J., When Life Nearly Died: The Greatest Mass Extinction of All Time, 2nd ed., London: Thames and Hudson, 2015.Google Scholar
  22. Benton, M.J., Sennikov, A.G., and Newell, A.J., Murchison’s first sighting of the Permian, at Vyazniki in 1841, Proc. Geol. Ass., 2010, vol. 121, pp. 313–318.CrossRefGoogle Scholar
  23. Benton, M.J., Shishkin, M.A., Unwin, D.M., and Kurochkin, E.N., Eds., The Age of Dinosaurs in Russia and Mongolia, Cambridge: Cambridge Univ. Press, 2000.Google Scholar
  24. Benton, M.J., Tverdokhlebov, V.P., and Surkov, M., Ecosystem remodelling among vertebrates at the Permian–Triassic boundary in Russia, Nature, 2004, vol. 432, pp. 97–100.CrossRefGoogle Scholar
  25. Bermúdez de Castro, J.M., and Martinón-Torres, M., Evolutionary interpretation of the modern human-like facial morphology of the Atapuerca Gran Dolina-TD6 hominins, Anthropol. Sci., 2014, vol. 122, pp. 149–155.CrossRefGoogle Scholar
  26. Bermúdez de Castro, J.M., Martinón-Torres, M., Carbonell, E., et al., The Atapuerca sites and their contribution to the knowledge of human evolution in Europe, Evol. Anthropol., 2004, vol. 13, pp. 24–41.CrossRefGoogle Scholar
  27. Bishop, M.J., Earliest record of man’s presence in Britain, Nature, 1975, vol. 233, pp. 95–97.CrossRefGoogle Scholar
  28. Boisvert, C., The pelvic fin and girdle of Panderichthys and the origin of tetrapod locomotion, Nature, 2005, vol. 438, pp. 1145–1147.CrossRefGoogle Scholar
  29. Boisvert, C.A., Mark-Kurik, E., and Ahlberg, P.E., The pectoral fin of Panderichthys and the origin of digits, Nature, 2008, vol. 456, pp. 636–638.CrossRefGoogle Scholar
  30. Bonebrake, T.C., Christensen, J., Boggs, C.L., and Ehrlich, P.R., Population decline assessment, historical baselines, and conservation, Conserv. Lett., 2010, vol. 3, pp. 371–378.CrossRefGoogle Scholar
  31. Bowen, D.Q., Reeves, A., Sykes, G.A., et al., Amino acid framework for the British marine Pleistocene, Quater. Sci. Rev., 1986, vol. 4, 279–318.Google Scholar
  32. Bridgland, D.R., Schreve, D.C., Keen, D.H., et al., Biostratigraphical correlation between the late Quaternary sequence of the Thames and key fluvial localities in central Germany, Proc.Geol. Ass., 2004, vol. 115, pp. 125–140.CrossRefGoogle Scholar
  33. Briggs, D.E.G., Paleontology: A new Burgess Shale fauna. Curr. Biol., 2014, vol. 24, pp. R398–R400.Google Scholar
  34. Broushkin, A.V. and Gordenko, N.V., Istchenkophyton filiciforme gen. et sp. nov., a new small vascular plant with thick cuticle from the Devonian of Voronezh Region (European Russia), Palaeontol. J., 2009, vol.43, pp. 1202–1216.Google Scholar
  35. Brown, S., Higham, T., Slon, V., et al., Identification of a new hominin bone from Denisova Cave, Siberia using collagen fingerprinting and mitochondrial DNA analysis, Sci. Rep., 2016, vol. 6, art. 23559. doi 10.1038/srep23559Google Scholar
  36. Cai, C.-Y., Dou, Y.-W., and Edwards, D., New observations on a Pridoli plant assemblage from north Xinjiang, northwest China, with comments on its evolutionary and paleogeographical significance, Geol. Mag., 1993, vol. 130, pp. 155–170.CrossRefGoogle Scholar
  37. Carbonell, E., Bermúdez de Castro, J.M., et al., An Early Pleistocene hominin mandible from Atapuerca-TD6, Spain, Proc. Nat. Acad. Sci. USA, 2005, vol. 102, pp. 5674–5678.CrossRefGoogle Scholar
  38. Carbonell, E., Bermúdez de Castro, J.M., Parés, J.M., et al., The first hominin of Europe, Nature, 2008, vol. 452, pp. 465–470.CrossRefGoogle Scholar
  39. Chestin, I.E., Paltsyn, M.Y., Pereladova, O.B., et al., Tiger re-establishment potential to former Caspian tiger (Panthera tigris virgata) range in Central Asia, Biol. Conserv. 2017, vol. 205, pp. 42–51.Google Scholar
  40. Clack, J.A., Gaining Ground: The Origin and Evolution of Tetrapods, 2nd ed., Indiana Univ. Press, 2012.Google Scholar
  41. Clack, J.A., Bennett, C.E., Carpenter, D.K., et al., Phylogenetic and environmental context of a Tournaisian tetrapod fauna, Nature Ecol. Evol., 2016, vol. 1, art. 2. doi 10.1038/s41559-016-0002Google Scholar
  42. Coates, M.I. and Clack, J.A., Polydactyly in the earliest known tetrapod limbs, Nature, 1990, vol. 347, pp. 66–69.CrossRefGoogle Scholar
  43. Coates, M.I., and Clack, J.A., Romer’s Gap—tetrapod origins and terrestriality, Bull. Mus. Nat. Hist. Natur. Paris, 1995, vol. 17 (Studies on Early Vertebrates, Arsenault, M., Lelièvre, H., and Janvier, P., Eds.), pp. 373–388.Google Scholar
  44. Collie, M., and Diemer, J., Murchison’s Wanderings in Russia, Nottingham: Brit. Geol. Surv., 2004.Google Scholar
  45. Conard, N.J., Serangeli, J., Böhner, U., et al., Excavations at Schöningen and paradigm shifts in human evolution, J. Hum. Evol., 2015, vol. 89, pp. 1–17.CrossRefGoogle Scholar
  46. Conway Morris, S., The community structure of the Middle Cambrian Phyllopod Bed (Burgess Shale), Palaeontology, 1986, vol. 29, pp. 423–467.Google Scholar
  47. Cooper, A., and Stringer, C.B., Did the Denisovans cross Wallace’s Line? Science, 2013, vol. 342, pp. 321–323.CrossRefGoogle Scholar
  48. Crees, J.J., Carbone, C., Sommer, R.S., et al., Millennialscale faunal record reveals differential resilience of European large mammals to human impacts across the Holocene, Proc. R. Soc. B, 2016, vol. 283, art. 20152152.Google Scholar
  49. Crees, J.J., and Turvey, S.T., Holocene extinction dynamics of Equus hydruntinus, a late-surviving European megafaunal mammal, Quater. Sci. Rev., 2014, vol. 91, pp. 16–29.CrossRefGoogle Scholar
  50. Currant, A.P., and Jacobi, R.M., A formal mammalian biostratigraphy for the Late Pleistocene of Britain, Quater. Sci. Rev., 2001, vol. 20, pp. 1707–1716.CrossRefGoogle Scholar
  51. Daeschler, E.B., Clack, J.A., and Shubin, N.H., Late Devonian tetrapod remains from Red Hill, Pennsylvania, USA: How much diversity? Acta Zool., 2009, vol. 90, pp. 306–317.Google Scholar
  52. Daeschler, E.B., Shubin, N.H., and Jenkins, F.A., A Devonian tetrapod-like fish and the evolution of the tetrapod body plan, Nature, 2006, vol. 440, pp. 757–763.CrossRefGoogle Scholar
  53. Darroch, S.A.F., Laflamme, M., and Clapham, M.E., Population structure of the oldest known macroscopic communities from Mistaken Point, Newfoundland, Paleobiology, 2013, vol. 39, pp. 591–608.CrossRefGoogle Scholar
  54. Davies, A.L., Colombo, S., and Hanley, N., Improving the application of long-term ecology in conservation and land management, J. Appl. Ecol., 2014, vol. 51, pp. 53–70.CrossRefGoogle Scholar
  55. Davis, M.C., Dahn, R.D., and Shubin, N.H., An autopodial- like pattern of Hox expression in the fins of a basal actinopterygian fish, Nature, 2007, vol. 447, pp. 473–477.CrossRefGoogle Scholar
  56. Derevianko, A.P., Petrin, V.T., and Rybin, E.P., The Kara-Bom site and characteristics of the Middle to Upper Paleolithic transition in the Altai, Arkheol. Etnogr. Antropol. Evraz., 2000, vol. 2, no. 2, pp. 33–52.Google Scholar
  57. Douka, K., Higham, T., Derevianko, A., and Shunkov, M., Radiocarbon chronology of the Denisova Cave (Russian Altai, Russia), in Conference of the European Society for the Study of Human Evolution, London: September, 2016, pp. 6666–6671.Google Scholar
  58. Droser, M.L., and Gehling, J.G., The advent of animals: The view from the Ediacaran, Proc. Nat. Acad. Sci. USA, 2015, vol. 112, pp. 4865–4870.CrossRefGoogle Scholar
  59. Edwards, D., Morris, J.L., Richardson, J.B., and Kenrick, P., Tansley review cryptospores and cryptophytes reveal hidden diversity in early land floras, New Phytol., 2014, vol. 202, pp. 50–78.CrossRefGoogle Scholar
  60. Fedonkin, M.A., Gehling, J.G., Grey, K., et al., The Rise of Animals–Evolution and Diversification of the Kingdom Animalia, Baltimore: Johns Hopkins Univ. Press, 2007.Google Scholar
  61. Fox-Strangways, W., Geological sketch of the environs of Petersburg, Trans. Geol. Soc. London, Ser.1, 1821, vol. 5, pp. 392–458.CrossRefGoogle Scholar
  62. Gaines, R.R., Hammarlund, E.U., Hou, X.-G., et al., Mechanism for Burgess Shale-type preservation, Proc. Nat. Acad. Sci. USA, 2012a, vol. 109, pp. 5180–5184.Google Scholar
  63. Gaines, R.R., Droser, M.L., Orr, P.J., et al., Burgess Shaletype biotas were not entirely burrowed away, Geology, 2012b, vol. 40, pp. 283–286.Google Scholar
  64. Gehling, J.G., Microbial mats in terminal Proterozoic siliciclastics: Ediacaran death masks, Palaios, 1999, vol. 14, pp. 40–57.CrossRefGoogle Scholar
  65. Golubkova, E.Yu., Zaitseva, T.S., Kuznetsov, A.B., et al., Microfossils and Rb–Sr age of glauconite in the key section of the Upper Proterozoic of the northeastern part of the Russian Plate (Keltmen-1 borehole), Doklady Earth Sci., 2015, vol. 462, no. 4, pp. 444–448.Google Scholar
  66. Gould, S.J., Wonderful Life, New York–London: Norton, 1989.Google Scholar
  67. Grayson, D.K., Nineteenth-century explanations of Pleistocene extinctions: A review and analysis, in Quaternary Extinctions: A Prehistoric Revolution, Martin, P.S. and Klein, R.G., Eds., Tucson: Univ. Arizona Press, 1984, pp. 5–39.Google Scholar
  68. Grayson, D.K., The archaeological record of human impacts on animal populations, J. World Prehist., 2001, vol. 15, pp. 1–68.CrossRefGoogle Scholar
  69. Grayson, D.K., Holocene underkill, Proc. Nat. Acad. Sci. USA, 2008, vol. 105, pp. 4077–4078.CrossRefGoogle Scholar
  70. Grazhdankin, D., Patterns of evolution of the Ediacaran soft-bodied biota, J. Paleontol., 2014, vol. 88, pp. 269–283.CrossRefGoogle Scholar
  71. Grimaldi, D.H., and Engel, M.S., Evolution of the Insects, Cambridge: Cambridge Univ. Press, 2005.Google Scholar
  72. Hall, C.M.S., Droser, M.L., Gehling, J.G., and Dzaugis, M.E., Paleoecology of the enigmatic Tribrachidium: New data from the Ediacaran of South Australia, Precambr. Res., 2015, vol. 269, pp. 183–194.CrossRefGoogle Scholar
  73. Haynes, G., The catastrophic extinction of North American mammoths and mastodonts, World Archaeol., 2002, vol. 33, pp. 391–416.CrossRefGoogle Scholar
  74. Hillson, S.W., Parfitt, S.A., Bello, S.M., et al., Two hominin incisor teeth from the Middle Pleistocene site of Boxgrove, Sussex, England, J. Hum. Evol., 2010, vol. 59, pp. 493–503.CrossRefGoogle Scholar
  75. Hublin, J.-J., Les presapiens européens, in L’Homme de Néandertal 3—L’anatomie, Trinkaus, E., Ed., Liège: ERAUL 30, 1988, pp. 75–80.Google Scholar
  76. Humboldt, A., von, Fragments de Géologie et de la Climatologie Asiastique, Gide, A., Ed., Paris: Pihan Delaforest, Delaunay, 1831, vols. 1 and 2.Google Scholar
  77. Ishchenko, T.A., The Cooksonia paleoflora of the Skalsky Horizon of Podolia and its stratigraphical significance, Geol. Zh., 1960, vol. 29, pp. 101–109.Google Scholar
  78. Ishchenko, T.A., On the Devonian flora of the Volyno–Podolian margin of the Russian Platform, Paleontol. Sbor. Lvov, 1965, vol. 2, pp. 123–125.Google Scholar
  79. Ishchenko, T.A., Flora of the top of the Lower to the bottom of the Middle Devonian deposits of the Podolsk Dniester Region, in Paleontologiya i stratigrafiya nizhnego paleozoya Volyno–Podolii (Palaeontology and Stratigraphy of the Lower Palaeozoic of Volyno–Podolia), Krandievckii, B.C., Ishchenko, T.A., and Kiryanov, V.V., Eds., Kiev: Naukova Dumka, 1968, pp. 80–113.Google Scholar
  80. Ishchenko, T.A., Pozdnesiluriiskaya flora Podolii (Late Silurian Flora of Podolia), Kiev: Naikova Dumka, 1975.Google Scholar
  81. Ishchenko, T.A., and Shlyakov, R.N., Middle Devonian liverworts (Marchantiidae) from Podolia, Palaeontol. Zh., 1979, vol. 3, pp. 114–125.Google Scholar
  82. Ivantsov, A.Y., Trilobite-like arthropod from the Lower Cambrian of the Siberian Platform, Acta Palaeontol. Polon., 1999, vol. 44, pp. 455–466.Google Scholar
  83. Ivantsov, A.Y., Feeding traces of Proarticulata–the Vendian Metazoa. Paleontol. J., 2011, vol. 45, no. 3, pp. 237–248.CrossRefGoogle Scholar
  84. Ivantsov, A.Y., Reconstruction of Charniodiscus yorgensis (macrobiota from the Vendian of the White Sea), Paleontol. J., 2016, vol. 50, no. 1, pp. 1–12.CrossRefGoogle Scholar
  85. Ivantsov, A.Y., Gritsenko, V.P., Konstantinenko, L.I., and Zakrevskaya, M.A., Revision of the problematic Vendian macrofossil Beltanelliformis (=Beltanelloides, Nemiana), Paleontol. J., 2014, vol. 48, pp. 1415–1440.CrossRefGoogle Scholar
  86. Ivantsov, A.Y., Zhuravlev, A.Y., Leguta, A.V., et al., Paleoecology of the Early Cambrian Sinsk biota from the Siberian Platform, Palaeogeogr., Palaeoclimatol., Palaeoecol., 2005, vol. 220, pp. 69–88.CrossRefGoogle Scholar
  87. Jacobi, R.M., and Higham, T.F.G., The early Late glacial re-colonization of Britain: New radiocarbon evidence from Gough’s Cave, southwest England, Quater. Sci. Rev., 2009, vol. 28, pp. 1895–1913.CrossRefGoogle Scholar
  88. Johnson, C., Australia’s Mammal Extinctions: A 50,000 Year History, Cambridge: Cambridge Univ. Press, 2006.Google Scholar
  89. Josephson, P., Dronin, N., Cherp, A., et al., An Environmental History of Russia, Cambridge: Cambridge Univ. Press, 2013.CrossRefGoogle Scholar
  90. Kirillova, I.V., Zanina, O.G., Kosintsev, P.A., et al., The first finding of a frozen Holocene bison (Bison priscus Bojanus, 1827) carcass in Chukotka, Doklady Biol. Sci., 2013, vol. 452, no. 4, pp. 296–299.CrossRefGoogle Scholar
  91. Knoll, A.H., and Sergeev, V.N., Taphonomic and evolutionary changes across the Mesoproterozoic–Neoproterozoic transition, Neues Jahrb. Geol. Paläontol. Abh., 1995, vol. 195, pp. 289–302.CrossRefGoogle Scholar
  92. Koch, P.L., and Barnosky, A.D., Late Quaternary extinctions: State of the debate, Ann. Rev. Ecol. Evol. Syst., 2006, vol. 37, pp. 215–250.CrossRefGoogle Scholar
  93. Krause, J., Fu, Q., Good, J.M., et al., The complete mitochondrial DNA genome of an unknown hominin from southern Siberia, Nature, 2010, vol. 464, pp. 894–897.CrossRefGoogle Scholar
  94. Kuijper, D.P.J., de Kleine, C., Churski, M., et al., Landscape of fear in Europe: Wolves affect spatial patterns of ungulate browsing in Białowieża Primeval Forest, Poland, Ecography, 2013, vol. 36, pp. 1263–1275.CrossRefGoogle Scholar
  95. Lacruz, R.S., Bermúdez de Castro, J.M., Martinón-Torres, M., et al., Facial morphogenesis of the earliest Europeans, PLoS ONE, 2013, vol. 8, no. 6, art. e65199.Google Scholar
  96. Lebedev, O.A., The first find of a Devonian tetrapod vertebrate in the USSR, Doklady Akad. Nauk SSSR, 1984, vol. 278, pp. 1470–1473.Google Scholar
  97. Lebedev, O.A., The first tetrapods: Searching and findings, Priroda, 1985, no. 11, pp. 26–36.Google Scholar
  98. Lebedev, O.A., Fish assemblages in the Tournaisian–Visean environments of the East European Platform, Geol. Soc. Spec. Publ., 1986, vol. 107 (Recent Advances in Lower Carboniferous Geology), pp. 387–415.Google Scholar
  99. Lebedev, O.A., and Clack, J.A., New material of Devonian tetrapods from the Tula Region, Russia, Palaeontology, 1993, vol. 36, pp. 721–734.Google Scholar
  100. Lebedev, O.A., A new tetrapod Jakubsonia livnensis from the Early Famennian (Devonian) of Russia and paleoecological remarks on the Late Devonian tetrapod habitats. Acta Univ. Latviensis, Ser. Earth Envir.Sci., 2004, vol. 679, pp. 79–98.Google Scholar
  101. Lebedev, O.A. and Coates, M.I., The postcranial skeleton of the Devonian tetrapod Tulerpeton curtum Lebedev, Zool. J. Linn. Soc., 1995, vol. 114, pp. 307–348.CrossRefGoogle Scholar
  102. Lepekhina, V.G., Petrosyan, N.M., and Radchenko, G.P., Main Devonian plants of the Altai–Sayan Mountain Region, Tr. Vses. Nauchno–Issled. Geol. Inst. Nov. Ser., 1962, vol. 70 (Data on Phytostratigraphy of the Devonian of the Altai–Sayan Mountain Region), pp. 66–189.Google Scholar
  103. Li, Z.-Y., Wu, X.-J., Zhou, L.-P., et al., Late Pleistocene archaic human crania from Xuchang, China, Science, 2017, vol. 355, pp. 969–972.Google Scholar
  104. Lister, A.M., and Sher, A.V., The origin and evolution of the woolly mammoth, Science, 2001, vol. 294, pp. 1094–1097.CrossRefGoogle Scholar
  105. Liu, A.G., Brasier, M.D., Bogolepova, O.K., et al., First report of a newly discovered Ediacaran biota from the Irkineeva Uplift, East Siberia, Newsl. Strat., 2013, vol. 46, pp. 95–110.CrossRefGoogle Scholar
  106. Liu, A.G., Framboidal pyrite shroud confirms the “death mask” model for moldic preservation of Ediacaran softbodied organisms, Palaios, 2016, vol. 31, pp. 259–274.CrossRefGoogle Scholar
  107. Lorimer, J., and Driessen, C., Wild experiments at the Oostvaardersplassen: Rethinking environmentalism in the Anthropocene, Trans. Inst. Brit. Geogr., 2014, vol. 39, pp. 169–181.CrossRefGoogle Scholar
  108. Ludwig, A., Debus, L., Lieckfeldt, D., et al., When the American sea sturgeon swam east, Nature, 2002, vol. 419, pp. 447–448.CrossRefGoogle Scholar
  109. Lukševičs, E., Variability in bothriolepid antiarchs (Placodermi) from the Main Devonian Field (East European Platform), Geobios, 1995, vol. 28, pp. 117–120.CrossRefGoogle Scholar
  110. Lukševičs, E. and Zupins, I., Sedimentology, fauna, and taphonomy of the Pavari site, Late Devonian of Latvia, Acta Univ. Latviensis, Ser. Earth Envir. Sci., 2004, vol. 679, pp. 99–119.Google Scholar
  111. Lyell, C., Principles of Geology, Being an Attempt to Explain the Former Changes of the Earth’s Surface, by Reference to Causes Now in Operation, London: John Murray, 1830–1833, vols. 1–3.CrossRefGoogle Scholar
  112. MacPhee, R.D.E., Tikhonov, A.N., Mol, D., et al., Radiocarbon chronologies and extinction dynamics of the Late Quaternary mammalian megafauna of the Taimyr Peninsula, Russian Federation, J. Archaeol. Sci., 2002, vol. 29, pp. 1017–1042.CrossRefGoogle Scholar
  113. Martin, P.S., Prehistoric overkill: The global model, in Quaternary Extinctions: A Prehistoric Revolution, Martin, P.S. and Klein, R.G., Eds., Tucson: University of Arizona Press, 1984, pp. 354–403.Google Scholar
  114. Martinón-Torres, M., Bermúdez De Castro, J.M., Gómez-Robles, A., et al., Morphological description and comparison of the dental remains from Atapuerca-Sima de los Huesos site (Spain), J. Hum. Evol., 2002, vol. 62, pp. 7–58.CrossRefGoogle Scholar
  115. Matthews, S.C., and Missarzhevsky, V.V., Small shelly fossils of Late Precambrian and Early Cambrian age: A review of recent work, J. Geol. Soc. London, 1975, vol. 131, pp. 289–304.CrossRefGoogle Scholar
  116. McClellan, R., Ed., WWF Living Planet Report 2014: Species and Spaces, People and Places, Gland, Switzerland: World Wide Fund for Nature, 2014.Google Scholar
  117. McGhee, G.R., When the Invasion of the Land Failed, NewYork: Columbia Univ. Press, 2013.CrossRefGoogle Scholar
  118. McGill, B.J., Dornelas, M., Gotelli, N.J., and Magurran, A.E., Fifteen forms of biodiversity trend in the Anthropocene, Trends Ecol. Evol., 2015, vol. 30, pp. 104–113.CrossRefGoogle Scholar
  119. McMahon, S., Anderson, R.A., Saupe, E.E., and Briggs, D.E.G., Experimental evidence that clay inhibits bacterial decomposers: Implications for the preservation of organic fossils, Geology, 2016, vol. 44, pp. 867–870.CrossRefGoogle Scholar
  120. McNabb, J., The British Lower Palaeolithic: Stones in Contention, London: Routledge, 2007. Meyen, S.V., Fundamentals of Palaeobotany, London: Chapman and Hall, 1987.Google Scholar
  121. Meyer, M., Fu, Q., Aximu-Petri, A., et al., A mitochondrial genome sequence of a hominin from Sima de los Huesos, Nature, 2014, vol. 505, pp. 403–406.CrossRefGoogle Scholar
  122. Meyer, M., Kircher, M., Gansauge, M.-T., et al., A highcoverage genome sequence from an archaic Denisovan individual, Science, 2012, vol. 338, pp. 222–226.CrossRefGoogle Scholar
  123. Mitchell, E.G., Kenchington, C.G., Liu, A.G., et al., Reconstructing the reproductive mode of an Ediacaran macro-organism, Nature, 2015, vol. 524, pp. 343–346.CrossRefGoogle Scholar
  124. Mitchell, G.F., Penny, L.F., Shotton, F.W., and West, R.G., Eds., A Correlation of Quaternary Deposits in the British Isles: Special Report 4, London: Geol. Soc. London, 1973.Google Scholar
  125. Müller, K.J., Walossek, D., and Zakharov, A., “Orsten” type phosphatized soft-integument preservation and a new record from the Middle Cambrian Kuonamka Formation in Siberia, Neues Jahrb. Geol. Paläontol. Abh., 1995, vol. 197, pp. 101–118.Google Scholar
  126. Murchison, R.I., The Silurian System, London: John Murray, 1839.Google Scholar
  127. Murchison, R.I., First sketch of some of the principal results of a second geological survey of Russia, in a letter to M. Fischer, Philos. Mag. J. Sci., Ser. 3, 1841, vol. 19, pp. 417–422.Google Scholar
  128. Murchison, R.I., de Verneuil, E., and von Keyserling, A., The Geology of Russia in Europe and the Ural Mountains, 1845, vol. 1: London: John Murray; vol. 2: Paris: Bertrand.Google Scholar
  129. Naimark, E., Kalinina, M., Shokurov, A., et al., Decaying in different clays: Implications for soft-tissue preservation, Palaeontology, 2016, vol. 59, pp. 583–595.CrossRefGoogle Scholar
  130. Newell, A.J., Tverdokhlebov, V.P., and Benton, M.J., Interplay of tectonics and climate on a transverse fluvial system, Upper Permian, southern Uralian foreland basin, Sed. Geol., 1999, vol. 127, pp. 11–29.Google Scholar
  131. O’Connor, T., and Sykes, N., Extinctions and Invasions: A Social History of British Fauna, Oxford: Windgather Press, 2010.Google Scholar
  132. Oakley, K.P., Andrews, P., Keeley, L.H., and Clark, J.D., A reappraisal of the Clacton spearpoint, Proc. Prehist. Soc., 1977, vol. 43, pp. 13–30.CrossRefGoogle Scholar
  133. Ochev, V.G. and Surkov, M.V., The history of excavation of Permo–Triassic vertebrates from Eastern Europe, in The Age of Dinosaurs in Russia and Mongolia, Benton, M.J., Shishkin, M.A., Unwin, D.M., and Kurochkin, E.N., Eds., Cambridge: Cambridge Univ. Press, 2000, pp. 1–16.Google Scholar
  134. Owen, R., Evidences of theriodonts in Permian deposits elsewhere than in South Africa, Q. J. Geol. Soc. London, 1876. vol. 32, pp. 352–363.Google Scholar
  135. Parfitt, S.A., Ashton, N.M., Lewis, S.G., et al., Early Pleistocene human occupation at the edge of the boreal zone in northern Europe, Nature, 2010, vol. 466, pp. 229–233.CrossRefGoogle Scholar
  136. Parfitt, S.A., Barendregt, R.W., Breda, M., et al., The earliest record of human activity in northern Europe, Nature, 2005, vol. 438, pp. 1008–1012.CrossRefGoogle Scholar
  137. Penkman, K.E.H., Preece, R.C., Bridgland, D.R., et al., An aminostratigraphy for the British Quaternary based on Bithynia opercula, Quater. Sci. Rev., 2013, vol. 61, pp. 111–134.CrossRefGoogle Scholar
  138. Pennisi, E., More genomes from Denisova Cave show mixing of early human groups, Science, 2013, vol. 340, p. 799.CrossRefGoogle Scholar
  139. Petrosyan, N.M., Stratigraphic importance of the Devonian flora of the USSR, in International Symposium on the Devonian System, Oswald, D.H., Ed., Calgary, Alberta: Alberta Soc. Petrol. Geologists, 1967, vol. 2, pp. 579–586.Google Scholar
  140. Raevskaya, E., Dronov, A., Servais, T., and Wellman, C.H., Cryptospores from the Katian (Upper Ordovician) of the Tungus Basin: The first evidence for early land plants from the Siberian paleocontinent, Rev. Palaeobot. Palynol., 2016, vol. 224, pp. 4–13.CrossRefGoogle Scholar
  141. Reich, D., Green, R.E., Kircher, M., et al., Genetic history of an archaic hominin group from Denisova Cave in Siberia, Nature, 2010, vol. 468, pp. 1053–1060.CrossRefGoogle Scholar
  142. Reich, D., Patterson, N., Kircher, M., et al., Denisova admixture and the first modern human dispersals into Southeast Asia and Oceania, Am. J. Hum. Genet., 2011, vol. 89, pp. 516–528.CrossRefGoogle Scholar
  143. Reichow, M.K., Pringle, M.S., Al’Mukhamedov, A.I., et al., The timing and extent of the eruption of the Siberian Traps large igneous province: Implications for the end- Permian environmental crisis, Earth Planet. Sci. Lett., 2009, vol. 277, pp. 9–20.CrossRefGoogle Scholar
  144. Richards, K.R., Sherwin, J.E., Smithson, T.R., et al., A new fauna of early Carboniferous chondrichthyans from the Scottish Borders, 2015. http://www.palass.org/meetings-events/annual-meeting/2015/annual-meeting-2015-cardiff-poster-abstracts.Google Scholar
  145. Rick, T.C. and Lockwood, R., Integrating paleobiology, archaeology, and history to inform biological conservation, Conserv. Biol., 2013, vol. 27, pp. 45–54.CrossRefGoogle Scholar
  146. Riding, R. and Zhuravlev, A. Yu., Structure and diversity of oldest sponge-microbe reefs: Lower Cambrian, Aldan River, Siberia, Geology, 1995, vol. 23, pp. 649–652.Google Scholar
  147. Roberts, M.B. and Parfitt, S.A., Eds., Boxgrove: A Middle Pleistocene Hominid Site at Eartham Quarry, Boxgrove, West Sussex, London: English Heritage Archaeological Report 17, 1999.Google Scholar
  148. Roebroeks, W., Hominid behaviour and the earliest occupation of Europe: An exploration, J. Hum. Evol., 2001, vol. 41, pp. 437–461.CrossRefGoogle Scholar
  149. Roebroeks, W. and van Kolfschoten, T., The earliest occupation of Europe: A short chronology, Antiquity, 1994, vol. 68, pp. 489–503.CrossRefGoogle Scholar
  150. Rozanov, A.Y. and Missarzhevsky, V.V., Biostratigraphy and fauna of the lower horizons of the Cambrian, Tr. Geol. Inst. Akad. Nauk SSSR, 1966, vol. 148, pp. 1–125.Google Scholar
  151. Rozhnov, S.V., From Vendian to Cambrian: The beginning of morphological organization of modern metazoan phyla, Russ. J. Develop. Biol., 2010, vol. 41, no. 6, pp. 425–437.CrossRefGoogle Scholar
  152. Sallan, L.C. and Coates, M.I., End-Devonian extinction and a bottleneck in the early evolution of modern jawed vertebrates, Proc. Nat. Acad. Sci., USA, 2010, vol. 107, pp. 10131–10135.CrossRefGoogle Scholar
  153. Sawyer, S., Renaud, G., Viola, B., et al., Nuclear and mitochondrial DNA sequences from two Denisovan individuals, Proc. Nat. Acad. Sci. USA, 2015, vol. 112, pp. 15696–15700.CrossRefGoogle Scholar
  154. Schopf, T.J.P., Fossilization potential of an intertidal fauna: Friday Harbor, Washington, Paleobiology, 1978, vol. 4, pp. 261–270.CrossRefGoogle Scholar
  155. Schultze, H.-P. and Arsenault, M., The panderichthyid fish Elpistostege: A close relative of tetrapods?, Palaeontology, 1985, vol. 28, pp. 293–309.Google Scholar
  156. Schweitzer, H.-J., Psilophyton burnotense oder Psilophyton goldschmidtii oder Margophyton goldschmidtii, Cour. Forsch.–Inst. Senckenberg, 1989, vol. 109, pp. 117–129.Google Scholar
  157. Senkevich, M.A., Description of the Devonian flora of Kazakhstan, in Materialy po geologii i poleznym iskopaemym Kazakhstana (Data on the Geology and Minerals of Kazakhstan), 1961, vol. 1, pp. 115–211.Google Scholar
  158. Senkevich, M.A., New Devonian psilophytes from Kazakhstan, Ezhegod. Vsesoyuz. Paleontol. Ob-va, 1975, vol. 21, pp. 288–289.Google Scholar
  159. Senkevich, M.A., Plants, in The Tokrau Horizon of the Upper Silurian: Balkhash Segment, Almaty: Nauka KazSSR, 1986, pp. 139–154.Google Scholar
  160. Sennikov, N.V., Morphology of the exoskeleton and soft tissues of Cambrian rhabdopleurids, Paleontol. J., 2016, vol. 50, pp. 1626–1636.CrossRefGoogle Scholar
  161. Sergeev, V.N., Semikhatov, M.A., Fedonkin, M.A., et al., Principal stages in evolution of Precambrian organic world: Communication 1. Archean and Early Proterozoic, Stratigr. Geol. Korrelyatsiya, 2007, vol. 15, no. 2, pp. 141–160.CrossRefGoogle Scholar
  162. Sergeev, V.N., Semikhatov, M.A., Fedonkin, M.A., and Vorob’eva, N.G., Principal stages in evolution of Precambrian organic world: Communication 2. The Late Proterozoic, Stratigr. Geol. Korrelyatsiya, 2010, vol. 8, pp. 561–592.CrossRefGoogle Scholar
  163. Shubin, N., Tabin, C., and Carroll, S., Fossils, genes and the evolution of animal limbs, Nature, 1997, vol. 388, pp. 639–648.CrossRefGoogle Scholar
  164. Sipko, T.P., European bison in Russia—past, present and future, European Bison Conserv. Newsl., 2009, vol. 2, pp. 148–159.Google Scholar
  165. Slater, B.J., Harvey, T.H.P., Guilbaud, R., and Butterfield, N.J., A cryptic record of Burgess Shale-type diversity from the Early Cambrian of Baltica, Palaeontology, 2017, vol. 60, pp. 117–140.CrossRefGoogle Scholar
  166. Slon, V., Sawyer, S., Renaud, G., et al., Genetic analyses of three Denisovan individuals from the Altai Mountains (Siberia), in European Society for the Study of Human Evolution Conference, London: September, 2015.Google Scholar
  167. Smith, M.R., Harvey, T.H.P., and Butterfield, N.J., The macro- and microfossil record of the Cambrian priapulid Ottoia, Palaeontology, 2015, vol. 58, pp. 705–721.CrossRefGoogle Scholar
  168. Smithson, T.R., Richards, K.R., and Clack, J.A., Lungfish diversity in Romer’s Gap: Reaction to the end-Devonian extinction, Palaeontology, 2015, vol.59, pp. 29–44.Google Scholar
  169. Standen, E.M., Du, T.Y., and Larsson, C.E., Developmental plasticity and the origin of tetrapods, Nature, 2014, vol. 513, pp. 54–58.CrossRefGoogle Scholar
  170. Stepanov, S.A., Phytostratigraphy of the key sections in the Devonian of the marginal parts of the Kuznetsk Basin, Tr. Sib. Nauchno-Issled. Inst. Geol. Geofiz. Min. Res., 1975, vol. 211, pp. 1–150.Google Scholar
  171. Stringer, C.B., Population relationships of later Pleistocene hominids: A multivariate study of available crania, J. Archaeol. Sci., 1974, vol. 1, pp. 317–342.CrossRefGoogle Scholar
  172. Stringer, C.B., Homo Britannicus, London: Penguin, 2007.Google Scholar
  173. Stringer, C.B., The changing landscapes of the earliest human occupation of Britain and Europe, in Developments in Quaternary Sciences: The Ancient Human Occupation of Britain, Ashton, N.M., Lewis, S.G., and Stringer, C.B., Eds., London: Elsevier, 2011, pp. 1–10.Google Scholar
  174. Stringer, C.B., The status of Homo heidelbergensis (Schoetensack 1908), Evol. Anthropol., 2012, vol. 21, pp. 101–107.CrossRefGoogle Scholar
  175. Stringer, C.B., The origin and evolution of Homo sapiens, Phil. Trans. R. Soc. B, 2016, vol. 371, art. 20150237.Google Scholar
  176. Stringer, C.B. and Barnes, I., Deciphering the Denisovans, Proc. Nat. Acad. Sci., USA, 2015, vol. 112, pp. 15542–15543.Google Scholar
  177. Stringer, C.B., Trinkaus, E., Roberts, M.B., et al., The Middle Pleistocene human tibia from Boxgrove, J. Hum. Evol., 1998, vol. 34, pp. 509–547.CrossRefGoogle Scholar
  178. Stuart, A.J., Late Quaternary extinctions on the continents: A short review, Geol. J., 2015, vol. 50, pp. 338–363.CrossRefGoogle Scholar
  179. Stuart, A.J., Kosintsev, P.A., Higham, T.F.G., and Lister, A.M., Pleistocene to Holocene extinction dynamics in giant deer and woolly mammoth, Nature, 2004, vol. 431, pp. 684–689.CrossRefGoogle Scholar
  180. Stuart, A.J., Sulerzhitsky, L.D., Orlova, L.A., et al., The latest woolly mammoths (Mammuthus primigenius Blumenbach) in Europe and Asia: A review of the current evidence, Quater. Sci. Rev., 2005, vol. 21, pp. 1559–1569.CrossRefGoogle Scholar
  181. Tarhan, L.G., Hood, A.v.S., Droser, M.L., et al., Exceptional preservation of soft-bodied Ediacara biota promoted by silica-rich oceans, Geology, 2016, vol. 44, pp. 951–954.CrossRefGoogle Scholar
  182. Thieren, E., Ervynck, A., Brinkhuizen, D., et al., The Holocene occurrence of Acipenser spp. in the southern North Sea: The archaeological record, J. Fish Biol., 2016, vol. 89, pp. 1958–1973.CrossRefGoogle Scholar
  183. Thomson, K.W., The ecology of Devonian lobe-finned fishes, Syst. Ass. Spec., 1980, vol. 15 (The Terrestrial Environment and the Origin of Land Vertebrates, Panchen, A.L., Ed.), pp. 187–222.Google Scholar
  184. Toro-Moyano, I., Martínez-Navarro, B., Agusti, J., et al., The oldest human fossil in Europe, from Orce (Spain), J. Hum. Evol., 2013, vol. 65, pp. 1–9.CrossRefGoogle Scholar
  185. Turvey, S.T., Holocene Extinctions. Oxford Univ. Press, Oxford, 2009.Google Scholar
  186. Van Roy, P., Briggs, D.E.G., and Gaines, R.R., The Fezouata fossils of Morocco—an extraordinary record of marine life in the Early Ordovician, J. Geol. Soc. London, 2015, vol. 172, pp. 541–549.CrossRefGoogle Scholar
  187. Van Roy, P., Orr, P.J., Botting, J.P., et al., Ordovician faunas of Burgess Shale type, Nature, 2010, vol. 465, pp. 215–218.CrossRefGoogle Scholar
  188. Vartanyan, S.L., Garutt, V.E., and Sher, A.V., Holocene dwarf mammoths from Wrangel Island in the Siberian Arctic, Nature, 1993, vol. 362, pp. 337–340.CrossRefGoogle Scholar
  189. Vlček, E., Mania, D., and Mania, U., A new find of a Middle Pleistocene mandible from Bilzingsleben, Germany, Naturwissenschaften, 2000, vol. 87, pp. 264–265.CrossRefGoogle Scholar
  190. Vorobyeva, E.I., A new dipnoan genus of the Paleozoic Emyaksin Formation of Yakutia, Paleontol. Zh., 1972, vol. 6, pp. 229–234.Google Scholar
  191. Vorobyeva, E.I., Morphology and nature of evolution of crossopterygian fishes, Tr. Paleontol. Inst. Akad. Nauk SSSR, 1977, vol. 163, pp. 3–239.Google Scholar
  192. Vorobyeva, E., and Kuznetsov A., The locomotor apparatus of Panderichthys rhombolepis (Gross), a supplement to the problem of fish–tetrapod transition}, in Fossil Fishes As Living Animals, Mark-Kurik, E., Ed., Tallinn: Acad. Sci. Estonia, 1992, pp. 131–140.Google Scholar
  193. Vorobyeva, E.I. and Schultze, H.-P., Description and systematics of panderichthyid fishes with comments on their relationship to tetrapods, in Origins of the Higher Groups of Tetrapods, Schultze, H.-P. and Trueb, L., Eds., Ithaca: Comstock Publ. Ass., 1991, pp. 68–109.Google Scholar
  194. Weiner, J. and Campbell, B., The taxonomic status of the Swanscombe skull, in The Swanscombe Skull, Ovey, C.D., Ed., London: Royal Anthropol. Inst., 1964, pp. 175–209.Google Scholar
  195. Wenban-Smith, F.F., Allen, P., Bates, M.R., et al., The Clactonian elephant butchery site at Southfleet Road, Ebbsfleet, UK, J. Quater. Sci., 2006, vol. 21, pp. 471–483.CrossRefGoogle Scholar
  196. Wignall, P.B., The Worst of Times: How Life on Earth Survived Eighty Million Years of Extinctions, Princeton: Princeton Univ. Press, 2015.CrossRefGoogle Scholar
  197. Wilby, P.R., Carney, J.N., and Howe, M.P.A., A rich Ediacaran assemblage from eastern Avalonia: Evidence of early widespread diversity in the deep ocean, Geology, 2011, vol. 39, pp. 655–658.CrossRefGoogle Scholar
  198. Wilby, P.R., Kenchington, C.G., and Wilby, R.L., Role of low intensity environmental disturbance in structuring the earliest (Ediacaran) macrobenthic tiered communities, Palaeogeogr., Palaeoclimatol., Palaeoecol., 2015, vol. 434, pp. 14–27.CrossRefGoogle Scholar
  199. Wilson, L.A. and Butterfield, N.J., Sediment effects on the preservation of Burgess Shale-type compression fossils, Palaios, 2014, vol. 29, pp. 145–153.CrossRefGoogle Scholar
  200. Xing, S., Martinón-Torres, M., Bermúdez de Castro, J.M., et al., Hominin teeth from the early Late Pleistocene Site of Xujiayao, Northern China, Am. J. Phys. Anthropol., 2015, vol. 156, pp. 224–240.CrossRefGoogle Scholar
  201. Yalden, D.W. and Albarella, U., The History of British Birds, Oxford: Oxford Univ. Press, 2009.Google Scholar
  202. Yurina, A.L., Devonskaya flora Tsentral’nogo Kazakhstana (Devonian Flora of Central Kazakhstan), Moscow: Mosk. Gos. Univ., 1969, vol. 8.Google Scholar
  203. Yurina, A.L., A new Devonian species of the genus Cooksonia (psilophytes), Palaeontol. Zh., 1964, no. 1, pp. 107–113.Google Scholar
  204. Zakharova, T.V. On the systematic position of the species “Psilophyton” goldschmidtii from the Lower Devonian, Paleontol. Zh., 1981, no. 3, pp. 111–118.Google Scholar
  205. Zimov, S.A., Pleistocene Park: Return of the mammoth’s ecosystem, Science, 2005, vol. 308, pp. 796–798.CrossRefGoogle Scholar
  206. Zimov, S.A., Zimov, N.S., Tikhonov, A.N., and Chaplin, F.S., Mammoth-steppe: A high-productivity phenomenon, Quater. Sci. Rev., 2012, vol. 57, pp. 26–45.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • M. J. Benton
    • 1
  • D. E. G. Briggs
    • 2
  • J. A. Clack
    • 3
  • D. Edwards
    • 4
  • J. Galway-Witham
    • 5
  • C. B. Stringer
    • 5
  • S. T. Turvey
    • 6
  1. 1.School of Earth Sciences, University of BristolBristolUK
  2. 2.Department of Geology and GeophysicsYale UniversityNew Haven, ConnecticutUSA
  3. 3.University Museum of Zoology, CambridgeDowning Street, CambridgeUK
  4. 4.School of Earth and Ocean SciencesCardiff University, Main BuildingPark Place, CardiffUK
  5. 5.Department of Earth SciencesNatural History MuseumCromwell Road, LondonUK
  6. 6.Institute of ZoologyZoological Society of London, Regent’s ParkLondonUK

Personalised recommendations