Paleontological Journal

, Volume 51, Issue 4, pp 430–440 | Cite as

Bacterial paleontology of the Neoarchean banded iron formations of Karelia and the Kola Peninsula

  • M. M. Astafieva
  • S. B. Felitsyn
  • N. A. Alfimova


Probable microfossils, presumably of bacterial origin, were found in the banded iron formations of Karelia and the Kola Peninsula. The age of these formations is 2.7–2.8 Ga. Based on the organic carbon content and balance estimations it was established that these banded iron formations were deposited in environments rich in organic matter. Comparative analysis of the morphology of Recent and Neoarchean microorganisms suggests a bacterial origin for some magnetite in the studied quartzites.


Archean Proterozoic banded iron formations iron quartzites bacteria cyanobacteria prokaryotes Karelia Kola Peninsula 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abyzov, S.S., Geptner, A.R., Gerasimenko, L.M., Gilichinsky, D.A., Hoover, R.B., Orleansky, V.K., Raaben, M.E., Rozanov, A.Yu., Soina, V.S., Vorobyova, E.A., Walsh, M., Westall, F., Zavarzin, G.A., Zhegallo, E.A., Zvyagintsev, D.G., et al., Bakterial’naya paleontologiya (Bacterial Paleontology), Rozanov, A.Yu., Ed., Moscow: Paleontol. Inst. Ross. Akad. Nauk, 2002.Google Scholar
  2. Alfimova, N.A., Felitsyn, S.B., and Matrenichev, V.A., Mobility of cerium in the 2.8-2.1 Ga exogenous environments of the Baltic Shield: Data on weathering profiles and sedimentary carbonates, Lithol. Miner. Resour., 2011, vol. 46, no. 5, pp. 397–408.CrossRefGoogle Scholar
  3. Antoshkina, A.I., Bacterial rock formation: The reality of modern research methods, Uchen. Zap. Kazan. Univ., Ser. Estestv. Nauki, 2011, vol. 153, no. 4, pp. 114–126.Google Scholar
  4. Astafieva, M.M. and Rozanov, A.Yu., Bacterial-paleontological study of Early Precambrian weathering crusts, Earth Sci. Res., 2012, vol. 1, no. 2, pp. 163–170.Google Scholar
  5. Astafieva, M.M., Gerasimanko, L.M., Geptner, A.R., Zhegallo, E.A., Zhmur, S.I., Karpov, G.A., Orleansky, V.K., Ponomarenko, A.G., Rozanov, A.Yu., Sumina, E.L., Ushatinskaya, G.T., Hoover, R.B., and Shkolnik, E.L., Iskopaemye bakterii i drugie mikroorganizmy v zemnykh porodakh i astromaterialakh (Fossil Bacteria and Other Microorganisms in Terrestrial Rocks and Astromaterials), Rozanov, A.Yu. and Ushatinskaya, G.T., Eds., Moscow: Paleontol. Inst. Ross. Akad. Nauk, 2011.Google Scholar
  6. Barskov, I.S., Dzhamalov, R.G., and Ovchinnikova, E.A., Nanobacteria are a new ecological factor and a global challenge, Vestn. Mezhdunar. Univ. Prirody, Obshchestva i Cheloveka “Dubna”, 2010, no. 1 (22), pp. 15–18.Google Scholar
  7. Bayanova, T.B., Mitrofanov, F.P., and Egorov, D.G., U-Pb dating of the dike complex at the Kirovogorsk deposit in the iron ore formation of the Kola Peninsula, Dokl. Earth Sci., 1998, vol. 361, no. 5, pp. 688–691.Google Scholar
  8. Bayanova, T.B., Vozrast repernykh geologicheskikh kompleksov Kol’skogo regiona i dlitel’nost’ protsessov magmatizma (Age of Reference Geological Complexes of the Kola Region and the Duration of Igneous Processes), Mitrofanov, F.P., Ed., St. Petersburg: Nauka, 2004.Google Scholar
  9. Chang, S.-B.R., Stolz, J.F., Kirschvink, J.L., and Awramik, S.M., Biogenic magnetite in stromatolites. II. Occurrence in ancient sedimentary environments, Precambr. Res., 1989, vol. 43, pp. 305–315.CrossRefGoogle Scholar
  10. Chisholm, S.W., Olson, R.J., Zettler, E.R., Goericke, R., Waterbury, J.B., and Welschmeyer, N.A., A novel free-living prochlorophyte abundant in the oceanic euphotic zone, Nature, 1988, vol. 334, no. 6180, pp. 340–343.CrossRefGoogle Scholar
  11. Chistyakova, N.I., Rusakov, V.S., Zavarzina, D.G., and Kozerenko, S.V., Formation of the magneto-ordering phase by thermophilic Fe(III)-reducing bacteria: Mössbauer study, Phys. Met. Metallogr., 2001, vol. 92, Suppl. 1, pp. S138–S142.Google Scholar
  12. Cloud, P.E., Atmospheric and hydrospheric evolution on the primitive Earth: Both secular accretion and biological and geochemical processes have affected earth’s volatile envelope, Science, 1968 vol. 160, no. 3829, pp. 729–736.CrossRefGoogle Scholar
  13. Costerton, J.W., Geesey, G.G., and Cheng, K.J., How bacteria stick, Sci. Am., 1978, vol. 238, no. 1, pp. 86–95.CrossRefGoogle Scholar
  14. Devouagard, B., Pósfai, M., Xin Hua, Bazylinski, D.A., Frankel, R.B., and Buseck, P.R., Magnetite from magnetotactic bacteria: size distributions and twinning, Am. Miner., 1998, vol. 83, pp. 1387–1398.CrossRefGoogle Scholar
  15. Dodd, M. and Papineau, D., Biosignatures of early life in >3.8 Ga banded iron formations?, Geophys. Res. Abstr., 2015, vol. 17, EGU2015-12987-1.Google Scholar
  16. Felitsyn, S.B., Bogomolov, E.S., and Alfimova, N.A., Isotope composition of neodymium in neo-Archean banded iron formations of Karelia and Kola Peninsula, Dokl. Earth Sci., 2015, vol. 465, no. 2, pp. 1268–1271.CrossRefGoogle Scholar
  17. Fortin, D., Ferris, F.G., and Beveridge, F.G., Chapter 5. Surface-mediated mineral development by bacteria, in Geomicrobiology: Interactions between Microbes and Minerals, Banfield J.F. and Nealson, K.H., Eds., Rev. Miner., vol. 35, no. 1, Washington D.C.: Mineral. Soc. Am., 1998, pp. 161–180.Google Scholar
  18. Gerasimenko, L.M., Hoover, R.B., Rozanov, A.Yu., Zhegallo, E.A., and Zhmur, S.I., Bacterial paleontology and studies of carbonaceous chondrites, Paleontol. J., 1999, vol. 33, no. 4, pp. 439–459.Google Scholar
  19. Halverson, G.P., Poitrasson, F., Hoffman, P.F., Nédélec, A., Montel, J.-M., and Kirby, J., Fe isotope and trace element geochemistry of the Neoproterozoic syn-glacial Rapitan iron formation, Earth Planet. Sci. Lett., 2011, vol. 309, nos. 1–2, pp. 100–112.CrossRefGoogle Scholar
  20. Hoashi Masamichi, Bevacqua, D.C., Otake Tsubasa, Watanabe Yumiko, Hickman, A.H., Utsunomiya Satoshi, and Ohmoto Hiroshi, Primary haematite formation in an oxygenated sea 3.46 billion years ago, Nat. Geosci., 2009, vol. 2, pp. 301–306.CrossRefGoogle Scholar
  21. Kholodov, V.N., A contribution to the problem of the evolution of sedimentation in the history of the Earth, Problemy doantropogennoi evolyutsii biosfery (Problems of the Pre-Anthropogenic Evolution of the Biosphere), Rozanov, A.Yu., Ed., Moscow: Nauka, 1993, pp. 123–167.Google Scholar
  22. Magnetite Biomineralization and Magnetoreception in Organisms: A New Biomagnetism, Kirshvink, J.L., Jones, D.S., and MacFadden, B.J., Eds., New York–London: Plenum Press, 1985.Google Scholar
  23. Klein, C., Some Precambrian banded iron formations (BIFs) from around the world: Their age, geologic setting,mineralogy,metamorphism,geochemistry,and origin, Am. Miner., 2005, vol. 90, no. 10, pp. 1473–1499.Google Scholar
  24. Kovalev, V.A., Bolotnye mineralogo-geokhimicheskie sistemy (Mineralogical and Geochemical Systems of Bogs), Minsk: Nauka i tekhnika, 1985.Google Scholar
  25. LaBerge, G.L., Microfossils and Precambrian iron formations, Geol. Soc. Am. Bull., 1967, vol. 78, no. 2, pp. 331–142.CrossRefGoogle Scholar
  26. LaBerge, G.L., Possible biological origin of Precambrian iron-formations, Econ. Geol., 1973, vol. 68, no. 7, pp. 1098–1109.CrossRefGoogle Scholar
  27. Lobach-Zhuchenko, S.B., Arestova, N.A., Kovalenko, A.V., Krylov, I.N., and Chekulaev, V.P., West Karelian domain, Rannii dokembrii Baltiiskogo shchita (Early Precambrian of the Baltic Shield), Glebovitsky, V.A., Ed., St. Petersburg: Nauka, 2005, pp. 343–363.Google Scholar
  28. Lowenstam, H.A. and Weiner, S., On Biomineralization, Oxford: Oxford Univ. Press, 1989.Google Scholar
  29. Maynard, J.B., Geochemistry of Sedimentary Ore Deposits, New York: Springer-Verlag, 1983.CrossRefGoogle Scholar
  30. Nikolaev, Yu.A. and Plakunov, V.K., Biofilm—“city of microbes” or an analogue of multicellular organisms?, Microbiology, 2007, vol. 76, no. 2, pp. 125–138.CrossRefGoogle Scholar
  31. Perry, E.C., Tan, F.C., and Morey, G.B., Geology and stable isotope geochemistry of the Biwabik Iron Formation, Northern Minnesota, Econ. Geol., 1973, vol. 68, no. 7, pp. 1110–1125.CrossRefGoogle Scholar
  32. Petrov, B.V. and Makrygina, V.A., Geokhimiya regional’nogo metamorfizma i ul’trametamorfizma (Geochemistry of Regional Metamorphism and Ultrametamorphism), Novosibirsk: Nauka, 1975.Google Scholar
  33. Pósfai, M., Buseck, P.R., Bazylinski, D.A., and Frankel, R.B., Iron sulfides from magnetotactic bacteria: Structure, composition, and phase transitions, Am. Miner., 1998, vol. 83, nos. 11–12, pp. 1469–1481.Google Scholar
  34. Posth, N.R., Konhauser, K.O., and Kappler, A., Banded iron formations, in Encyclopedia of Geobiology, Reitner, J., Thiel, V., Eds., Dordrecht, The Netherlands: Springer, 2011, pp. 92–103.CrossRefGoogle Scholar
  35. Rozanov, A.Yu., Fossil bacteria and new view on the sedimentation, Soros. Obraz. Zh., 1999, vol. 10, no. 47, pp. 63–67.Google Scholar
  36. Rozanov, A.Yu., Fossil bacteria, sedimentogenesis, and the early biospheric evolution, Paleontol. J., 2003, vol. 37, no. 6, pp. 600–608.Google Scholar
  37. Rozanov, A.Yu., Bacterial paleontology, sedimentogenesis, and early stages in the evolution of the Biosphere, Sovremennye problemy geologii (Modern Problems of Geology), Gavrilov, Yu.O. and Khutorskoi, M.D., Eds., Tr. Geol. Inst. Ross. Akad. Nauk, vol. 565, Moscow: Nauka, 2004, pp. 448–462.Google Scholar
  38. Rozanov, A.Yu. and Astafieva, M.M., The evolution of the Early Precambrian geobiological systems, Paleontol. J., 2009, vol. 43, no. 8, pp. 911–927.CrossRefGoogle Scholar
  39. Rozanov, A.Yu. and Zhegallo, E.A., A contribution to the problem of the genesis of ancient phosphorites in Asia, Litol. Polezn. Iskop., 1989, no. 3, pp. 67–82.Google Scholar
  40. Rozanov, A.Yu., Astafieva, M.M., Vrevsky, A.B., Alfimova, N.A., and Matrenichev, V.A., Microfossils of the Early Precambrian continental crusts of weathering, Fenoscandian Shield, Otech. Geol., 2008, no. 3, pp. 83–90.Google Scholar
  41. Earth’s Earliest Biosphere, its Origin and Evolution, Schopf, J.W., Ed., Princeton N.J.: Princeton Univ. Press, 1983.Google Scholar
  42. Shkolnik E.L., Zhegallo E.A., Gerasimenko L.M., and Shuvalova, Yu.V., Uglerodistye porody i zoloto v nikh basseina Vitvatersrand, YuAR—issledovanie s pomoshch’yu elektronnogo mikroskopa (Carbonaceous Rocks and Associated Gold in the Witwatersrand Basin, South Africa: A Study Utilizing an Electron Microprobe), Khinchuk, A.I., Ed., Moscow: Eslan, 2005.Google Scholar
  43. Slobodkin, A.I., Thermophilic iron-reducing prokaryotes, Extended Abstract of Doctoral (Biol.) Dissertation, Moscow: Winogradsky Inst. Microbiol., Russ. Acad. Sci., 2008.Google Scholar
  44. Slobodkin, A.I., Zavarzina, D.G., Sokolova, T.G., and Bonch-Osmolovskaya, E.A., Dissimilatory reduction of inorganic electron acceptors by thermophilic anaerobic prokaryotes, Microbiology, 1999, vol. 68, no. 5, pp. 522–542.Google Scholar
  45. Spring, S. and Schleifer, K.H., Diversity of magnetotactic bacteria, Syst. Appl. Microbiol., 1995, vol. 18, no. 2, pp. 147–153.CrossRefGoogle Scholar
  46. Tazaki Kazue, Biomineralization of layer silicates and hydrated Fe/Mn oxides in microbial mats: an electron microscopical study, Clays Clay Miner., 1997, vol. 45, no. 2, pp. 203–212.CrossRefGoogle Scholar
  47. Tebo, B.M., Ghiorse, W.C., van Waasbergen, L.G., Siering, P.L., and Caspi, R., Bacterially mediated mineral formation: Insights into manganese (II) oxidation from molecular genetic and biochemical studies, Rev. Miner. Geochem., 1997, vol. 35, no. 1, pp. 225–266.Google Scholar
  48. Vologdin, A.G., Geological activity of microorganisms, Izv. Akad. Nauk SSSR. Ser. Geol., 1947, no. 3, pp. 19–36.Google Scholar
  49. Vologdin, A.G., Zemlya i zhizn'. Evolyutsiya sredy i zhizni na Zemle (Earth and Life: Evolution of the Environment and Life on the Earth), Moscow: Nedra, 1976.Google Scholar
  50. Westall, F., Boni, L., and Guerzoni, E., The experimental silicification of microorganisms, Palaeontology, 1995, vol. 38, no. 3, pp. 495–528.Google Scholar
  51. Zavarzin, G.A., Development of microbial communities in the history of the Earth, Problemy doantropogennoi evolyutsii biosfery (Problems of the Pre-Anthropogenic Evolution of the Biosphere), Rozanov, A.Yu., Ed., Moscow: Nauka, 1993, pp. 212–222.Google Scholar
  52. Zavarzin, G.A., The change of the paradigm in biology, Vestn. Ross. Akad. Nauk, 1995, vol. 65, no. 1, pp. 8–23.Google Scholar
  53. Zavarzina, D.G., The role of dissimilatory Fe(III)-reducing bacteria in transformation of iron minerals, Paleontol. J., 2004a, vol. 38, no. 3, pp. 231–237.Google Scholar
  54. Zavarzina, D.G., Formation of magnetite and siderite by thermophilic Fe(III)-reducing bacteria, Paleontol. J., 2004b, vol. 38, no. 6, pp. 585–589.Google Scholar
  55. Zhegallo, E.A., Rozanov, A.Yu., Ushatinskaya, G.T., Hoover R.B., Gerasimenko, L.M., and Ragozina, A.L., Atlas of Microorganisms from Ancient Phosphorites of Khubsugul (Mongolia), Huntsville AL: NASA, 2000.Google Scholar
  56. Zhmur, S.I., Gorlenko, V.M., Rozanov, A.Yu., Zhegallo, E.A., and Lobzova, R.V., Cyanobacterial benthic system—a producent of carbonaceous material for shungites of the Lower Proterozoic of Karelia, Litol. Polezn. Iskop., 1993, no. 2, pp. 122–124.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • M. M. Astafieva
    • 1
  • S. B. Felitsyn
    • 2
  • N. A. Alfimova
    • 2
    • 3
  1. 1.Borissiak Paleontological InstituteRussian Academy of SciencesMoscowRussia
  2. 2.Institute of Precambrian Geology and GeochronologyRussian Academy of SciencesSt. PetersburgRussia
  3. 3.St. Petersburg State UniversitySt. PetersburgRussia

Personalised recommendations