Paleontological Journal

, Volume 48, Issue 9, pp 1003–1014 | Cite as

A new petalodont chondrichthyan from the bear gulch limestone of montana, USA, with reassessment of Netsepoye hawesi and comments on the morphology of holomorphic petalodonts

  • E. D. Grogan
  • R. Lund
  • M. Fath


A new holomorphic petalodont from the Bear Gulch Limestone, Obruchevodus griffithi, is described and features of the related Netsepoye hawesi are reinterpreted. Comparison of these taxa with the holomorphic petalodonts Janassa bituminosa, Belantsea montana, and Siksika ottae provide insight into petalodont anatomical form and variation. All holomorphic material supports holostyly and nested, subcranial branchial arches. Teeth occur in families with linguo-labial replacement but alignment of most families relative to the jaw ramus results in a staggered tooth alignment between adjacent tooth families. Symphysial teeth are the exception to this pattern. Tooth retention is clearly indicated only in the homodont Janassa bituminosa. In contrast there is no evidence of tooth retention in examined petalodonts with a heterodont dentition. There is variation in styles of squamation among all forms; sexual dimorphism in scale development and distribution are suggested as well. Despite depressiform and compressiform conditions there is commonality in possession of a lobular, anteriorly extended and high aspect ratio pectoral fin, large pelvic fins, and absence of fin spines. Pectoral fins provide the primary means of locomotion. Variation in the ventral aspect of the pelvic girdle anatomy exists between that interpreted for Janassa and that documented by Obruchevodus and Netsepoye. Male claspers are long and highly flexible. Laterally compressed body forms display two dorsal fins (first being largest) that are variable in their vertical expanse along the length of the fin. Cranial anatomy shows some correspondence to general features of the Holocephali. Meckel’s cartilage is dorso-ventrally deep, as in extant chimaeroids, with contralaterals in symphysial fusion. Mandibular labial cartilages, when present, may be sexually dimorphic.


chondrichthyan petalodont Obruchevodus Belantsea Netsepoye Janassa 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Berg, L.S., Classification of fishes, both recent and fossils, Trans. Zool. Inst. Acad. Sci. USSR, 1955, no. 2, pp. 20–286.Google Scholar
  2. Blake, R.W., Fish functional design and swimming performance, J. Fish Biol., 2004, no. 65(5), pp. 1193–1222.Google Scholar
  3. Brandt, S., Janassa korni (Weigelt)—Neubeschreibung eines petalodonten Elasmobranchiers aus dem Kupferschiefer und Zechsteinkalk (Perm) von Eisleben (Sachsen-Anhalt), Paläontol. Z., 1996, no. 70, pp. 505–520.Google Scholar
  4. Breder, C.M., The shedding of teeth by Carcharhinus littoralis (Mitchell), Copeia, 1942, no. 1, pp. 42–44.Google Scholar
  5. Ginter, M., Hampe, O., and Duffin, C., Handbook of Paleoichthyology, vol. 3D: Chondrichthyes. Paleozoic Elasmobranchii: Teeth, München: Verlag Dr. Friedrich Pfeil, 2010, no. 3, p. 168.Google Scholar
  6. Grogan, E.D. and Lund, R., Debeerius ellefseni (fam. nov., gen. nov., spec. nov.), an autodiastylic chondrichthyan from the Mississippian Bear Bulch Limestone of Montana (USA), the relationships of the Chondrichthyes, and comments on gnathostome evolution, J. Morphol., 2000, no. 243, pp. 219–245.Google Scholar
  7. Grogan, E.D. and Lund, R., The origin and relationships of early Chondrichthyes, in Biology of Sharks and Their Relatives, Boca Raton: CRC Press, 2004, pp. 3–31.Google Scholar
  8. Grogan, E.D., Lund, R., and Greenfest-Allen, E., The origin and relationships of early Chondrichthyes, in Biology of Sharks and their Relatives, 2nd ed., FL, Boca Raton: CRC Press, 2012, pp. 3–30.CrossRefGoogle Scholar
  9. Hancock, A. and Atthey, T., Notes on the remains of some reptiles and fishes from the shales of the Nothumberland coal field, Ann. Magazine Nat. History, 1864, no. (4)1, pp. 346–378.Google Scholar
  10. Hancock, A. and Howse, R., On Janassa bituminosa Schlotheim, from the marl slate of Midderidge, Durham, Ann. Magazine Nat. History, 1870, no. 4, pp. 47–62.Google Scholar
  11. Hansen, M.C., Systematic relationships of petalodontiform chondrichthyans, Ninth Int. Congr. Strat. Geol. Carboniferous, Washington and Champaign-Urbana, 1979, Dutro, J.T. and Pfeffercorn, H.W., Eds., in Palaeontology, Palaeoecology, Palaeogeography, Carbondale and Edwardsville, South. Illinois Univ. Press, 1985, vol. 5, pp. 523–541.Google Scholar
  12. Hay, O.P., Bibliography and catalog of the fossil vertebrata of North America, U.S. Geol. Surv. Bull., 1902, no. 179, p. 868.Google Scholar
  13. Jaekel, O., Über die Organisation der Petalodonten, Z. Dtsch. Geol. Ges., 1899, no. 51, pp. 258–298.Google Scholar
  14. Jernvall, J. and Thesleff, I., Tooth shape formation and tooth renewal: evolving with the same signals, Development, 2012, no. 139, pp. 3487–3497.Google Scholar
  15. Lund, R., On a dentition of Polyrhizodus (Chondrichthyes, Petalodontiformes) from the Namurian Bear Gulch Limestone of Montana, J. Vertebr. Paleontol., 1983, no. 3(1), pp. 1–6.Google Scholar
  16. Lund, R., New petalodonts (Chondrichthyes) from the Upper Mississippian Bear Gulch Limestone (Namurian E2b) of Montana, J. Vertebr. Paleontol., 1989, no. 9(3), pp. 350–368.Google Scholar
  17. Lund, R. and Grogan, E.D., Relationships of the Chimaeriformes and the basal radiation of the Chondrichthyes, Rev. Fish Biol. Fisheries, 1997, no. 7, pp. 65–123.Google Scholar
  18. Lund, R., Grogan, E.D., and Fath, M., On the Relationships of the Petalodontiformes (Chondrichthyes), this volume.Google Scholar
  19. Macesic, L.J. and Kajiura, S.M., Comparative punting kinematics and pelvic fin musculature of benthic batoids, J. Morphol., 2010, no. 271, pp. 1219–1228.Google Scholar
  20. Moy-Thomas, J.A., The early evolution and relationships of the elasmobranchs, Bio. Rev., 1939, no. 14, pp. 1–26.Google Scholar
  21. Newberry, J.S. and Worthen, A.H., Descriptions of new genera and species of vertebrates, mainly from the subCarboniferous limestone and Coal Measures of Illinois, Geol. Surv. Ill., 1866, no. 2, pp. 9–134.Google Scholar
  22. Obruchev, D.V., Fundamentals of Paleontology, vol. 11: Agnatha, Pisces, Jerusalem: Israel Program for Scientific Translations, 1967, p. 825.Google Scholar
  23. Ørvig, T., Phylogeny of tooth tissue: evolution of some calcified tissues in early vertebrates, Miles, A.E.W., Ed., in Structural and Chemical Organization of Teeth, New York: Academic Press, 1967, vol. 1, pp. 45–110.Google Scholar
  24. Patterson, C., The phylogeny of the chimaeroids, Philos. Trans. R. Soc., Ser. B, 1965, no. 249(757), pp. 101–219.Google Scholar
  25. Schaumberg, G., Neue Kenntnisse tiber die Anatomie von Janassa bituminosa (Schlotheim), Holocephali, Chondrichthyes aus dem permischen Kupferschiefer, Paläontol. Z., 1979, no. 54(3‐4), pp. 334–346.Google Scholar
  26. Schlotheim, E.F., Die Petrefactenkunde auf ihrem jetzigen Standpunkte durch die Beschreibung seiner Sammlungversteinerter und fossiler überreste der Tier-und Pflanzenreichs der Vorwelt erlautert, Gotha, 1820, p. 437.Google Scholar
  27. Thorsen, D.H. and Westneat, M.W., Diversity of pectoral fin structure and function in fishes with labriform propulsion, J. Morphol., 2005, vol. 263, p. 133–150.CrossRefGoogle Scholar
  28. Webb, P.W., Body form, locomotion and foraging in aquatic vertebrates, Am. Zool., 1984, no. 24, pp. 107–120.Google Scholar
  29. Zangerl, R., Chondrichthyes 1. Paleozoic Elasmobranchii, in Handbook of Paleoichthyology 3A, Stuttgart: Gustav Fischer Verlag, 1981, pp. 1–115.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  1. 1.Biology DepartmentSaint Joseph’s UniversityPhiladelphiaUSA
  2. 2.Carnegie Museum of Natural HistoryPittsburghUSA
  3. 3.Academy of Natural Sciences in PhiladelphiaPhiladelphiaUSA

Personalised recommendations