Paleontological Journal

, Volume 47, Issue 11, pp 1236–1244 | Cite as

The furcula and the evolution of avian flight

  • Walter J. BockEmail author


The presence of a short furcula in Archaeopteryx suggests that this bird possessed a small, shortfibered, cranial portion of the pinnate m. pectoralis originating from the furcula and possibly from the aponeurosis between the furcula and the coracoid and cartilaginous sternum, and inserting on the cranial edge of the humerus, and an equally small, short-fibered pinnate caudal part of the same muscle arising from the presumably cartilaginous sternum and inserting on the ventral surface of the deltoid crest of the humerus. In Archaeopteryx, the cranial-most portion of the m. pectoralis protracted the wing and held it in place against the backward pressure, or drag, of the air when the bird flew. There is no basis for postulating that the caudal part of the m. pectoralis in Archaeopteryx was sufficiently large for active flapping flight, although this presumably small muscle probably held the wings in a horizontal position necessary for aerial locomotion. The muscle fibers of all parts of the m. pectoralis were short because the small distance between its origin and insertion. The combination of features in the pectoral system of Archaeopteryx indicates strongly that this bird was a specialized glider, not an active flapping flier. Avian flight started from the trees downward, not from the ground upward.


furcula muscle-bone system avian flight Archaeopteryx 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bock, W.J., The avian skeletomuscular system, in Avian Biology, Farner, D.S. and King, J.R., Eds., New York: Academic Press, 1974, vol. IV, pp. 119–257.Google Scholar
  2. Bock, W.J., Levels of complexity and organismal organization, in Selected Symposia and Monographs U.Z.I., vol. 5: Form and Function, Lanzavecchia, G. and Valvassori, R., Eds., Modena: Mucchi, 1991, pp. 181–212.Google Scholar
  3. Bock, W.J. and Bühler, P., Origin of Birds: Feathers, Flight And Homoiothermy, Archaeopteryx, 1995, vol. 13, pp. 5–13.Google Scholar
  4. de Beer, G., Archaeopteryx Lithographica. A Study Based Upon the British Museum Specimen, London: British Museum (Natural History), 1954.Google Scholar
  5. Feduccia, A., The Origin and Evolution of Birds, New Haven: Yale University Press, 1999, Second ed.Google Scholar
  6. Feduccia, A. and Tordoff, H.B., Feathers of Archaeopteryx: asymmetric vanes indicate aerodynamic function, Science, 1979, vol. 203, pp. 1021–1022.CrossRefGoogle Scholar
  7. Gans, C. and Bock, J.W., The functional significance of muscle architecture-a theoretical analysis, Ergebn. Anat., 1965, vol. 38, pp. 115–142.Google Scholar
  8. George, J.C.D. and Berger, A.J., Avian Myology, New York: Academic Press, 1966.Google Scholar
  9. Goslow, G.E., Dial, K.P., and Jenkins, F.A., The avian shoulder: an experimental approach, Amer. Zool., 1989, vol. 29, pp. 287–301.Google Scholar
  10. Hudson, G.E. and Lanzillotti, P.J., Gross anatomy of the wing muscles in the family corvidae, Amer. Midi. Natur., 1955. vol. 53, pp. 1–44.CrossRefGoogle Scholar
  11. Jenkins, F.A., The evolution of the avian shoulder joint, Amer. J. Sci. A, 1993. vol. 293, pp. 253–267.CrossRefGoogle Scholar
  12. Jenkins, F.A., Dial, K.P., and Goslow, G.E., A cineradiography analysis of bird flight: the wishbone in starlings is a spring, Science, 1988, vol. 241, pp. 1495–1498.CrossRefGoogle Scholar
  13. Kurochkin, E.N. and Bogdanovich, I.A., Origin of feathered flight, Paleontol. J., 2010, vol. 44, no. 12, pp. 1570–1588.CrossRefGoogle Scholar
  14. Martin, L.D., A new skeletal model of Archaeopteryx, Archaeopteryx, 1995, vol. 13, pp. 33–44.Google Scholar
  15. Mayr, G., Pohl, B., Hartman, S., and Peters, D.S., The tenth skeletal specimen of Archaeopteryx, Zool. J. Linn. Soc., 2007, vol. 149, pp. 97–116.CrossRefGoogle Scholar
  16. Meyers, R.A., Morphology of the antebrachial musculature in the American Kestrel, Falco sparverius (Aves), Ann. Anat., 1996, vol. 178, pp. 49–60.CrossRefGoogle Scholar
  17. New Perspectives on the Origin and Early Evolution of Birds, Gauthier, J. and Gall, L.F., Eds., New Haven: Peabody Mus. Natur. Hist., Yale University, 2001.Google Scholar
  18. Norberg, U.M., Vertebrate Flight: Mechanics, Physiology, Morphology, Ecology, and Evolution, Berlin: Springer Verlag, 1990.CrossRefGoogle Scholar
  19. Olson, S.L. and Feduccia, A., Flight capability and the pectoral girdle of Archaeopteryx, Nature, 1979, vol. 178, pp. 247–248.CrossRefGoogle Scholar
  20. Pennycuick, C.J., Modelling the Flying Bird, Burlington: Academic Press, 2008.Google Scholar
  21. Rayner, J.M.V., On the origin and evolution of flapping flight aerodynamics in birds, in New Perspectives on the Origin and Early Evolution of Birds, Gauthier, J. and Gall, L.F., Eds., New Haven: Peabody Mus. Natur. Hist., 2001, pp. 363–385.Google Scholar
  22. Stegmann, B., Die funktionelle Bedeutung des Schlüsselbeines bei den Vögeln, J. Ornithol., 1964, vol. 105, pp. 450–463.CrossRefGoogle Scholar
  23. Sy, M., Funktionell-anatomische Untersuchungen am Vogelflüge, J. Ornithol., 1936, vol. 84, pp. 199–296.CrossRefGoogle Scholar
  24. The Beginnings of Birds, Hecht, M.K., Ostrom, J.H., Viohl, G., and Wellnhofer, P., Eds., Eichstätt: Freunde des Jura-Museums-Eichstätt, 1985.Google Scholar
  25. Videler, J.J., Avian Flight, Oxford: Oxford University Press, 2005.Google Scholar
  26. Wellnhofer, P., Archaeopteryx. Der Urvogel von Solnhofen, München: Verlag Dr. Friedrich Pfeil, 2008.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  1. 1.Department of Biological SciencesColumbia UniversityNew YorkUSA

Personalised recommendations