Advertisement

Paleontological Journal

, Volume 47, Issue 10, pp 1155–1162 | Cite as

Reflection of changes in sea surface circulation over the northeastern Iceland Basin in planktonic foraminiferal assemblages during the late Pleistocene-Holocene

  • L. D. BashirovaEmail author
  • N. P. Lukashina
Article

Abstract

Paleotemperature reconstructions based on foraminiferal analysis and estimates of the iceberg-rafted debris (IRD) obtained from sediment core AMK-4438 are provided. The sediments are dated 300 ka. It was shown that, during this period, sea surface conditions in the northeastern Iceland Basin varied considerably because of both glacial-interglacial alternation and short-term fluctuations of sea surface temperature due to ice melting during the Heinrich events.

Keywords

planktonic foraminifers sea surface temperature Pleistocene Holocene Iceland Basin 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barash, M.S., Chetvertichnaya paleookeanologiya Atlanticheskogo okeana (Quaternary Paleoceanography of the Atlantic Ocean), Moscow: Nauka, 1988.Google Scholar
  2. Berger, A. and Loutre, M.F., Modeling the 100-kyr Glacial-Interglacial Cycles, Glob. Planet. Change, 2010, vol. 72, pp. 275–281.CrossRefGoogle Scholar
  3. Bond, G., Heinrich, H., Broecker, W., Labeyrie, L., McManus, J., Andrews, J., Huon, S., Jantschik, R., Clasen, S., and Simet, C., Evidence for Massive Discharges of Icebergs into the North Atlantic Ocean during the Last Glacial Period, Nature, 1992, vol. 360, no. 6401, pp. 245–249.CrossRefGoogle Scholar
  4. Bond, G.C., Shower, W., Elliot, M., Evans, M., Lottit, R., Hajdasa, I., Bonani, G., and Johnson, S., The North Atlantic’s l–2 Kyr Climate Rhythm: Relation to Heinrich Events, Dansgaard/Oeschger Cycles and the Little Ice Age, Mech. Glob. Clim. Change Mil. Time Scal. Geophys. Monogr., 1999, vol. 112, pp. 35–58.CrossRefGoogle Scholar
  5. Broecker, W.S., The Great Ocean Conveyor, Oceanography, 1991, vol. 4, pp. 79–89.CrossRefGoogle Scholar
  6. Broecker, W.S., Abrupt Climate Change Revisited, Glob. Planet. Change, 2006, vol. 54, pp. 211–215.CrossRefGoogle Scholar
  7. Chapman, M.R., Shackleton, N.J., et al., Sea Surface Temperature Variability during the Last Glacial-Interglacial Cycle: Assessing the Magnitude and Pattern of Climate Change in the North Atlantic, Palaeogeogr. Palaeoclimatol. Palaeoecol., 2000, vol. 157, pp. 1–25.CrossRefGoogle Scholar
  8. Clark, P.U., Pisias, N.G., Stocker, T.F., and Weaver, A.J., The Role of the Thermohaline Circulation in Abrupt Climate Change, Nature, 2002, vol. 415, pp. 863–869.CrossRefGoogle Scholar
  9. Cortijo, E., Labeyrie, L., Vidal, L., Vautravers, M., Chapman, M., Duplessy, J.-C., Elliot, M., Arnold, M., Turon, J.-L., and Auffret, G., Changes in Sea Surface Hydrology Associated with Heinrich Event 4 in the North Atlantic Ocean between 40° and 60° N, Earth and Planet. Sci. Let., 1997, vol. 146, pp. 29–45CrossRefGoogle Scholar
  10. Ganopolski, A. and Rahmstorf, S., Rapid Changes in Glacial Climate Simulated in a Coupled Climate Model, Nature, 2001, vol. 409, pp. 153–158.CrossRefGoogle Scholar
  11. Hays, J.D., Imbrie, J., and Shackleton, N., Variations in the Earth’s Orbit: Pacemaker of the Ice Ages, Science, 1976, vol. 194, pp. 1121–1132.CrossRefGoogle Scholar
  12. Heinrich, H., Origin and Consequences of Cyclic Ice Rafting in the Northeast Atlantic Ocean during the Past 130,000 Years, Quater. Res., 1988, vol. 29, no. 2, pp. 142–152.CrossRefGoogle Scholar
  13. Hutson, W.H., Transfer Functions under No-analog Conditions: Experiments with Indian Ocean Planktonic Foraminifera, Quater. Res., 1977, vol. 8, pp. 355–367.CrossRefGoogle Scholar
  14. Kandiano, E.S. and Bauch, H.A., Surface Ocean Temperatures in the North-east Atlantic during the Last 500 000 Years: Evidence from Foraminiferal Census Data, Terra Nova, 2003, vol. 15, pp. 265–271.CrossRefGoogle Scholar
  15. Kandiano, E.S. and Bauch, H.A., Sea Surface Temperature Variability in the North Atlantic during the Last Two Glacial-Interglacial Cycles: Comparison of Faunal, Oxygen Isotopic, and Mg/Ca-derived Records, Palaeogeogr. Palaeoclimatol. Palaeoecol., 2004, vol. 204, pp. 145–164.CrossRefGoogle Scholar
  16. Kucera, M., Rosell-Mele’, A., Schneider, R., Waelbroeck, C., and Weinelt, M., Multiproxy Approach for the Reconstruction of the Glacial Ocean Surface (MARGO), Quater. Sci. Rev., 2005, vol. 24, pp. 813–819.CrossRefGoogle Scholar
  17. Kutzbach, J.E., Ruddiman, W.F., Vavrus, S.J., and Philippon, G., Climate Model Simulation of Anthropogenic Influence on Greenhouse-induced Climate Change (Early Agriculture to Modern): The Role of Ocean Feedbacks, Clim. Change, 2010, vol. 99, pp. 351–381CrossRefGoogle Scholar
  18. Lisiecki, L.E. and Raymo, M.E., Plio-Pleistocene Climate Evolution: Trends and Transitions in Glacial Cycle Dynamics, Quater. Sci. Rev., 2007, vol. 26, pp. 56–69.CrossRefGoogle Scholar
  19. Milankovitch, M., Kanon der Erdbestrahlung und seine Andwendung auf das Eiszeitenproblem, Belgrade: Roy. Serb. Acad. Spec. Publ., 1941.Google Scholar
  20. Morley, J.J. and Hays, J.D., Towards a High-resolution, Global, Deep-Sea Chronology for the Last 750 000 years, Earth Planet. Sci. Let., 1981, vol. 53, pp. 279–295.CrossRefGoogle Scholar
  21. Mudelsee, M. and Schulz, M., The Mid-Pleistocene Climate Transition: Onset of 100 ka Cycle Lags Ice Volume Build-up by 280 ka, Earth Planet. Sci. Let., 1997, vol. 151, pp. 117–123.CrossRefGoogle Scholar
  22. Oppo, D.W. and Lehmann, S.J., Suborbital Timescale Variability of North Atlantic Deep Water during the Past 200,000 Years, Paleoceanography, 1995, vol. 10, pp. 901–910.CrossRefGoogle Scholar
  23. Overpeck, J.T., Webb III, T, and Prentice, I.C., Quantitative Interpretation of Fossil Pollen Spectra: Dissimilarity Coefficients and the Method of Modern Analogs, Quate. Res., 1985, vol. 23, pp. 87–108.CrossRefGoogle Scholar
  24. Prell, W.L., The Stability of Low Latitude Sea Surface Temperatures: An Evaluation of the CLIMAP Reconstruction with Emphasis on Positive SST Anomalies, Rep. TR 025. US Dep. Ener., Washington, DC, 1985.Google Scholar
  25. Ruddiman, W.F., The Anthropogenic Greenhouse Era Began Thousands of Years Ago, Clim. Change, 2003, vol. 61, pp. 261–293.CrossRefGoogle Scholar
  26. Ruddiman, W.F., Orbital Changes and Climate, Quater. Sci. Rev., 2006, vol. 25, pp. 3092–3112.CrossRefGoogle Scholar
  27. Sarnthein, M., Stattegger, K., Dreger, D., et al., Fundamental Models and Abrupt Changes in North Atlantic Circulation and Climate over the Last 60 ky—Concepts, Reconstruction, and Numerical Modeling, in: The Northern North Atlantic: A Changing Environment, Schäfer, P., Ritzrau, W., Schlüter, M., and Thiede, J., Eds., Heidelberg: Springer, 2001, pp. 365–410.CrossRefGoogle Scholar
  28. Smart, C.W., Maslin, M.A., and Dixon, K. E. NE Atlantic Surface Water Weight Changes over the Last 15 kyr, Paleogeogr. Paleoclimat. Paleoecol., 2009, vol. 282, pp. 58–66.CrossRefGoogle Scholar
  29. Waelbroeck, C., Labeyrie, L., Duplessy, J.-C., Guiot, J., Labracherie, M., Leclaire, H., and Duprat, J., Improving Past Sea Surface Temperature Estimates Based on Planktonic Fossil Faunas, Paleoceanography, 1998, vol. 13, pp. 272–283.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  1. 1.Atlantic branch of the P.P., Shirshov Institute of OceanologyRussian Academy of SciencesKaliningradRussia
  2. 2.Immanuel Kant Baltic Federal UniversityKaliningradRussia

Personalised recommendations