Paleontological Journal

, Volume 47, Issue 9, pp 1016–1029 | Cite as

The emergence of molecular machines as a prerequisite of the ancient RNA world evolution

Article

Abstract

The problem of the start of biological evolution in the ancient RNA world is considered. It is postulated that the appearance of catalytic RNAs — ribozymes — via spontaneous cis- and trans-rearrangements of polyribonucleotides in primordial Darwin ponds should not have been sufficient for the start of evolution, until a new class of functional RNA, namely energy-dependent molecular machines, arose. The proposed hypothesis is that the simplest and primary type of molecular machines could be nucleoside triphosphate-dependent RNA-based helicases, which were capable of unwinding the stable double-helical RNAs inevitably formed during RNA syntheses on complementary templates. Thereupon, unwinding RNA polymerases could appear as a result of association or fusion of helicases and polyribonucleotide-polymerizing ribozymes. The latter event provided the mechanism of RNA replication using the double-helical RNAs as a communal genofond (gene pool) of a Darwin pond, and thus initiated the fast evolution of the ancient RNA world.

Keywords

evolution helicases molecular machines polymerases polyribonucleotides ribozymes RNA word 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bartel, D.P. and Szostak, J.W., Isolation of new ribozymes from a large pool of random sequences, Science, 1993, vol. 261, no. 5127, pp. 1411–1418.CrossRefGoogle Scholar
  2. Benner, S.A., Carrigan, M.A., Ricardo, A., and Frye, F., Setting the stage: The history, chemistry, and geobiology behind RNA, in The RNA world, Gesteland, R.F., Cech, T.R., and Atkins, J.F.N.Y., Eds., New York: CSHL Press, 2006, 3rd ed., pp. 1–21.Google Scholar
  3. Chetverin, A.B., Chetverina, H.V., and Munishkin, A.V., On the nature of spontaneous RNA synthesis by Qb replicase, J. Mol. Biol., 1991, vol. 222, no. 1, pp. 3–9.CrossRefGoogle Scholar
  4. Chetverina, H.V. and Chetverin, A.B., Cloning of RNA molecules in vitro, Nucl. Acids Res., 1993, vol. 21, no. 10, pp. 2349–2353.CrossRefGoogle Scholar
  5. Chetverina, H.V., Demidenko, A.A., Ugarov, V.I., and Chetverin, A.B., Spontaneous rearrangements in RNA sequences, FEBS Lett., 1999, vol. 450, no. 1, pp. 89–94.CrossRefGoogle Scholar
  6. Cordin, O., Banroques, J., Tanner, N.K., and Linder, P., The DEAD-box protein family of RNA helicases, Gene, 2006, vol. 367, pp. 17–37.CrossRefGoogle Scholar
  7. Ellington, A. and Szostak, J., In vitro selection of RNA molecules that bind specific ligands, Nature, 1990, vol. 346, no. 6287, pp. 818–822.CrossRefGoogle Scholar
  8. Gelles, J. and Landick, R., RNA polymerase as a molecular motor, Cell, 1998, vol. 93, pp. 13–16.CrossRefGoogle Scholar
  9. Gilbert, W., Origin of life: The RNA world, Nature, 1986, vol. 319, no. 6055, p. 618.CrossRefGoogle Scholar
  10. Gilbert, W. and Souza, S.J., Introns and the RNA world, in The RNA world, Gesteland, R.F., Cech, T.R., and Atkins, J.F.N.Y., Eds., New York: CSHL Press, 1999, 2nd ed., pp. 221–231.Google Scholar
  11. Hansen, J.L., Schmeing, T.M., Klein, D.J., Ippolito, J.A., Nissen, P., Ban, N., Moore, P.B., and Steitz, T.A., Progress towards an understanding of the structure and enzymatic mechanism of the large ribosomal subunit, Cold Spring Harb. Symp. Quant. Biol., 2001, vol. 66, pp. 33–42.CrossRefGoogle Scholar
  12. Johnston, W.K., Unrau, P.J., Lawrence, M.S., Glasner, M.E., and Bartel, D.P., RNA-catalyzed RNA polymerization: Accurate and general RNA-templated primer extension, Science, 2001, vol. 292, no. 5520, pp. 1319–1325.CrossRefGoogle Scholar
  13. Meselson, M. and Stahl, F.W., The replication of DNA in Escherichia coli, Proc. Natl. Acad. Sci. U.S.A., 1958, vol. 44, no. 7, pp. 671–682.CrossRefGoogle Scholar
  14. Nissen, P., Ippolito, J.A., Ban, N., Moore, P.B., and Steitz, T.A., RNA tertiary interactions in the large ribosomal subunit: the A-minor motif, Proc. Natl. Acad. Sci. U.S.A., 2001, vol. 98, no. 9, pp. 4899–4903.CrossRefGoogle Scholar
  15. Nudler, E., RNA polymerase active center: the molecular engine of transcription, Annu. Rev. Biochem., 2009, vol. 78, pp. 335–361.CrossRefGoogle Scholar
  16. Oparin, A.I., Proiskhozhdenie zhizni (Origin of life), Moscow: Moskovskii rabochii, 1924.Google Scholar
  17. Robertson, D.L. and Joyce, G.F., Selection in vitro of an RNA enzyme that specifically cleaves single-stranded DNA, Nature, 1990, vol. 344, no. 6265, pp. 467–468.CrossRefGoogle Scholar
  18. Saenger, W., Principles of nucleic acid structure, Cantor, C.R., Ed., Springer Advanced Texts in Chemistry, vol. 4, New York: Springer-Verlag, 1984.Google Scholar
  19. Spirin, A.S., Ancient RNA world, Paleontol. J., 2010, vol. 44, no. 7, pp. 737–746.CrossRefGoogle Scholar
  20. Spirin, A.S., RNA polymerase as a molecular machine, Mol. Biol., 2002, vol. 36, no. 4, pp. 208–215.Google Scholar
  21. Spirin, A.S., The ribosome as a conveying thermal ratchet machine, J. Biol. Chem., 2009, vol. 284, no. 32, pp. 21103–21119.CrossRefGoogle Scholar
  22. Spirin, A.S., The RNA world and its evolution, Mol. Biol., 2005, vol. 39, no. 4, pp. 466–472.CrossRefGoogle Scholar
  23. Spirin, A.S., When, where, and in what environment could the RNA world appear and evolve?, Paleontol. J., 2007, vol. 41, no. 5, pp. 481–488.CrossRefGoogle Scholar
  24. Spirin, A.S. and Finkelstein, A.V., The ribosome as a Brownian ratchet machine, in Molecular Machines, Frank, J., Ed., New York: Cambridge Univ. Press, 2011, pp. 158–190.CrossRefGoogle Scholar
  25. Steitz, T.A., DNA polymerases: structural diversity and common mechanism, J. Biol. Chem., 1999, vol. 274, no. 25, pp. 17395–17398.CrossRefGoogle Scholar
  26. Steitz, T.A., Visualizing polynucleotide polymerase machines at work, EMBO J., 2006, vol. 25, no. 15, pp. 3458–3468.CrossRefGoogle Scholar
  27. Suzuki, T., Terasaki, M., Takemoto-Hori, C., Hanada, T., Ueda, T., Wada, A., and Watanabe, K., Structural compensation for the deficit of RRNA with proteins in the mammalian mitochondrial ribosome, J. Biol. Chem., 2001, vol. 276, no. 35, pp. 21724–21736.CrossRefGoogle Scholar
  28. Tuerk, C. and Gold, L., Systematic evolution of ligands by exponential enrichment, Science, 1990, vol. 249, no. 4968, pp. 505–510.CrossRefGoogle Scholar
  29. Wochner, A., Attwater, J., Coulson, A., and Holliger, P., Ribozyme-catalyzed transcription of an active ribozyme, Science, 2011, vol. 332, no. 6026, pp. 209–212.CrossRefGoogle Scholar
  30. Woese, C.R., The universal ancestor, Proc. Natl. Acad. Sci. U.S.A., 1998, vol. 95, no. 12, pp. 6854–6859.CrossRefGoogle Scholar
  31. Zimmer, C., On the Origin of Life on Earth, Science, 2009, vol. 323, no. 5911, pp. 198–199.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  1. 1.Institute of Protein ResearchRussian Academy of SciencesPushchino, Moscow oblastRussia

Personalised recommendations