Advertisement

Paleontological Journal

, Volume 46, Issue 1, pp 1–11 | Cite as

A new metazoan from the Vendian of the White Sea, Russia, with possible affinities to the ascidians

  • M. A. Fedonkin
  • P. Vickers-Rich
  • B. J. Swalla
  • P. Trusler
  • M. Hall
Article

Abstract

Two specimens recovered from late Neoproterozoic shallow marine sediments of northern Russia may be the oldest known ascidians. Dated at around 555 Ma, these, together with the younger Ausia from the Nama Group in southwestern Africa, are probably relatives of these invertebrate chordates, which have a deep time origin predicted by molecular studies.

Keywords

Ediacaran Vendian chordate ancestor ascidian tunicates Russia Namibia 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ayala, F.J., Rzhestsky, A., and Ayala, F.J., Origin of the Metazoan Phyla: Molecular Clocks Confirm Paleontological Estimates, Proc. Natl. Acad. Sci. U.S.A., 1998, vol. 95, pp. 606–611.CrossRefGoogle Scholar
  2. Bengtson, S., Spicules, in Early Cambrian Fossils from South Australia, Bengtson, S., et al., Eds., Mem. Assoc. Australas. Palaeontol., 1990, vol. 9, pp. 24–37.Google Scholar
  3. Blair, J.E. and Hedges, S.B., Molecular Phylogeny and Divergence Times of Deuterostome Animals, Mol. Biol. Evol., 2005, vol. 22, no. 11, pp. 2275–2284.CrossRefGoogle Scholar
  4. Boardman, R.S., Cheetham, A.H., and Blake, D., and Cook, P.L., Bryozoa in Treatise on Invertebrate Paleontology: Part G, Revised, Robinson, R.A., Ed., Boulder and Lawrence: Geol. Soc. Am. and Univ. Kans. Press, 1983, vol. 1, pp. 1–625.Google Scholar
  5. Bourlat, S.J., Juliusdottir, T., Lowe, C.J., Freeman, R., Aronowicz, J., Kirschner, M., Lander, E.S., Thorndyke, M., Nakano, H., Kohn, A.B., Heyland, A., Moroz, L.L., Copley, R.R., and Telford, M.J., Deuterostome Phylogeny Reveals Monophyletic Chordates and the New Phylum Xenoturbellida, Nature, 2006, vol. 447, no. 7115, pp. 85–88.CrossRefGoogle Scholar
  6. Buchsbaum, R., Buchsbaum, M., Pearse, J., and Pearse, V., Animals without Backbone, Chicago: Univ. Chicago Press, 1985, 3rd ed.Google Scholar
  7. Cameron, C.B., Garey, J.R., and Swalla, B.J., Evolution of the Chordate Body Plan: New Insights from Phylogenetic Analyses of Deuterostome Phyla, Proc. Natl. Acad. Sci. U.S.A., 2000, vol. 97, pp. 4469–4474.CrossRefGoogle Scholar
  8. Chen, J.-Y., Huang, D.-Y., Peng, Q.-Q., et al., The First Tunicate from the Early Cambrian of South China, Proc. Natl. Acad. Sci. U.S.A., 2003, vol. 100, no. 14, pp. 8314–8318.CrossRefGoogle Scholar
  9. Chistyakov, V.G., Kalmykova, N.A., Nesov, L.A., and Suslov, G.A., On the Presence of Vendian Sediments in the Middle Reaches of the Onega River and Possible Existence of Tunicates (Tunicata: Chordata) in the Precambrian, Vestn. Leningr. Univ., 1984, no. 6, pp. 11–19.Google Scholar
  10. Christen, R., Ratto, A., Baroin, A., Perasso, R., Grell, K.G., and Adoutte A., An Analysis of the Origin of Metazoans, Using Comparisons of Partial Sequences of the 28S RNA, Reveals An Early Emergence of Triploblasts, EMBO J., 1991, vol. 10, pp. 499–503.Google Scholar
  11. Conway Morris, S., Ediacaran-Like Fossils in Cambrian Burgess Shale-Type Faunas of North America, Palaeontology, 1993, vol. 36, pp. 593–635.Google Scholar
  12. Delsuc, F., Brinkmann, K., Chourrout, D., and Philippe, H., Tunicates and not Cephalochordates are the Closest Living Relatives of Vertebrates, Nature, 2006, vol. 439, no. 7079, pp. 965–968.CrossRefGoogle Scholar
  13. Fedonkin, M.A., Gehling, J.G., Grey, K., Narbonne, G., and Vickers-Rich, P., The Rise of Animals. Evolution and Diversification of the Kingdom Animalia, Baltimore: Johns Hopkins Univ. Press, 2007.Google Scholar
  14. Fedonkin, M.A. and Ivantsov, A.Yu., Ventogyrus, a Possible Siphonophore-Like Trilobozoan Coelenterate from the Vendian Sequence (Late Neoproterozoic), Northern Russia, in The Rise and Fall of the Ediacaran Biota, Vickers-Rich, P. and Komarower, P., Eds., London: Geol. Soc. London, 2007, pp. 187–194.Google Scholar
  15. Garstang, W., The Morphology of the Tunicata and Its Bearing on the Phylogeny of the Chordata, J. Microscopy Soc., 1928, vol. 72, pp. 51–87.Google Scholar
  16. Gehling, J.G. and Rigby, J.K., Long Expected Sponges from the Neoproterozoic Ediacara Fauna of South Australia, J. Paleontol., 1996, vol. 70, no. 2, pp. 185–195.Google Scholar
  17. Grazhdankin, D.V., Structure and Depositional Environment of the Vendian Complex in the Southeastern White Sea Area, Stratigr. Geol. Correlation, 2003, vol. 11, no. 4, pp. 313–331.Google Scholar
  18. Hahn, G. and Pflug, H.D., Polypenartige Organismen aus dem Jung-Prakambrium (Nama-Gruppe) von Namibia, Geol. Palaeontol., 1985, vol. 19, pp. 1–13.Google Scholar
  19. Hill, D., Archaeocyatha, in Treatise on Invertebrate Paleontology: Part E, Revised, Teichert, C., Ed., Boulder and Lawrence: Geol. Soc. Am. And Univ. Kans. Press, 1972, 2nd ed., pp. 1–158.Google Scholar
  20. Ivantsov, A.Yu. and Grazhdankin, D.V., A New Representative of the Petalonamae from the Upper Vendian of the Arkhangelsk Region, Paleontol. J., 1997, vol. 31, no. 1, pp. 1–16.Google Scholar
  21. Jenkins, R.F., Functional and Ecological Aspects of Ediacaran Assemblages, in Origin and Early Evolution of the Metazoa, Lipps, J.H., Signor, P.W., Eds., New York: Plenum Press, 1992, pp. 131–176.Google Scholar
  22. Kott, P., The Australian Ascidiacea. Part 4, Aplousobranchia (3), Didemnidae, Mem. Queensl. Mus., 2001, vol. 47, no. 1, pp. 1–407.Google Scholar
  23. Madin, L. and Fremer, P., Jellyfish-Like Creatures May Play Major Role in Fate of CO2 in the ocean, http://www.physorg.com/news71148175.html (2006).
  24. Martin, M.W., Grazhdankin, D.V., Bowring, S.A., Evans, D.A.D., Fedonkin, M.A., and Kirschvink, J.L., Age of Neoproterozoic Bilaterian Body and Trace Fossils, White Sea, Russia: Implications for Metazoan Evolution, Science, 2000, vol. 288, pp. 841–845.CrossRefGoogle Scholar
  25. Matthews, S.C. and Missarzhevsky, V.V., Small Shelly Fossils of Late Precambrian and Early Cambrian Age: a Review of Recent Work, Quart. J. Geol. Soc., 1975, vol. 131, pp. 289–304.CrossRefGoogle Scholar
  26. McCaffrey, M.A., Moldowan, J.M., Lipton, P.A., Summons, R.E., Peters, K.E., Jeganathan, A., and Watt, D.S., Paleoenvironmental Implications of Novel C30 Steranes in Precambrian to Cenozoic Age Petroleum and Bitumens, Geochim. Cosmochim. Acta, 1994, vol. 58, pp. 529–532.CrossRefGoogle Scholar
  27. Müller, K.J., Palaeobotryllus from the Upper Cambrian of Nevada—a Probable Ascidian, Lethaia, 1977, vol. 10, no. 2, pp. 107–118.CrossRefGoogle Scholar
  28. Nakatani, Y., Takeda, K., Kohara, Y., and Morishita, S., Reconstruction of the Vertebrate Ancestral Genome Reveals Dynamic Genome Reorganization in Early Vertebrates, Genome Res., 2007, vol. 17, pp. 1254–1265.CrossRefGoogle Scholar
  29. Nei, M., Xu, P., and Glazko, G., Estimation of Divergence Times from Multiprotein Sequences for a Few Mammalian Species and Several Distantly Related Organisms, Proc. Natl. Acad. Sci. U.S.A., 2001, vol. 98, pp. 2497–2502.CrossRefGoogle Scholar
  30. Pennachetti, C.A., Functional Morphology of the Branchial Basket of Ascidia paratropa (Tunicata, Ascidiacea), Zoomorphology, 1984, vol. 104, pp. 216–222.CrossRefGoogle Scholar
  31. Peterson, K.V., Lyons, J., Nowak, K.S., Takacs, C.M., Wargo, M.J., and McPeek, M.A., Estimating Metazoan Divergence Times with a Molecular Clock, Proc. Natl. Acad. Sci. U.S.A., 2004, vol. 101, pp. 6536–6541.CrossRefGoogle Scholar
  32. Philippe, K., Chenuil, A., and Adoutte, A., Can the Cambrian Explosion Be Inferred Through Molecular Phylogeny?, Development, 1994, Suppl. 120, pp. 15–25.Google Scholar
  33. Rehder, D., The Bioinorganic Chemistry of Vanadium, Angew. Chem., 1991, vol. 30, pp. 148–167.CrossRefGoogle Scholar
  34. Rehder, D., Structure and Function of Vanadium Compounds in Living Organisms, BioMetals, 1992, vol. 5, pp. 3–12.CrossRefGoogle Scholar
  35. Satoh, N., Developmental Biology of Ascidians, New York: Cambridge Univ. Press, 1994.Google Scholar
  36. Shu, D.-G., Chen, L., Han, J., and Zhang, S.-L., An Early Cambrian Tunicate from China, Nature, 2001, vol. 411, pp. 472–473.CrossRefGoogle Scholar
  37. Steiner, M., Mehl, D., Reitner, J., and Erdtmann, B.-D., Oldest Entirely Preserved Sponges and Other Fossils from the Lowermost Cambrian and a New Facies Reconstruction of the Yangtze Platform (China), Berl. Geowiss. Abh. E, 1993, vol. 9, pp. 293–329.Google Scholar
  38. Swalla, B.J. and Smith, A.B., Deciphering Deuterostome Phylogeny: Molecular, Morphological and Palaeontological Perspectives, Phil. Trans. R. Soc. Lond. Ser. B, 2008, vol. 363, no. 1496, pp. 1557–1568.CrossRefGoogle Scholar
  39. Sokolov, B.S., Pre-Cambrian Biosphere in the Light of Paleontological Data, Vestn. Akad. Nauk SSSR, 1972, no. 8, pp. 48–54.Google Scholar
  40. Stankovsky, A.F., Sinitsyn, A.V., and Shinkarev, N.F., Buried Flood Basalts of the Onega Peninsula, White Sea, Vestn. Leningr. Univ., 1972, no. 18, pp. 12–20.Google Scholar
  41. Stankovsky, A.F., Verichev, E.M., and Dobeiko, M.P., The Vendian of the Southeastern White Sea Region, in Vendskaya sistema. T. 2. Stratigrafiya i geol. protsessy (Vendian System: Vol. 2. Stratigraphy and Geological Processes), Moscow: Nauka, 1985, pp. 67–76.Google Scholar
  42. Wada, H. and Satoh, N., Details of the Evolutionary History from Invertebrates to Vertebrates, As Deduced from the Sequences of 18S RDNA, Proc. Natl. Acad. Sci. U.S.A., 1994, vol. 91, pp. 1801–1804.CrossRefGoogle Scholar
  43. Wada, H., Evolutionary History of Free-Swimming and Sessile Lifestyles in Urochordates As Deduced from 18S RDNA Molecular Phylogeny, Mol. Biol. Evol., 1998, vol. 15, pp. 1189–1194.Google Scholar
  44. Wainright, P.O., Hinkle, G., Sogin, M.L., and Stickel, S.K., Monophyletic Origins of the Metazoa: An Evolutionary Link with Fungi, Science, 1993, vol. 260, pp. 340–342.CrossRefGoogle Scholar
  45. Wang, D., Kumar, Y.-C., and Hedges, S.B., Divergence Time Estimates for the Early History of Animal Phyla and the Origin of Plants, Animals and Fungi, Proc. R. Soc. Lond. Ser. B, 1999, vol. 266, pp. 163–171.CrossRefGoogle Scholar
  46. Williams, G.C., The Pennatulacea of Southern Africa (Coelenterata, Anthozoa), Ann. S. Afr. Museum, 1990, vol. 99, pp. 31–119.Google Scholar
  47. Zeng, L.Y. and Swalla, B.J., Molecular Phylogeny of the Protochordates: Chordate Evolution, Can. J. Zool., 2005, vol. 83, no. 1, pp. 24–33.CrossRefGoogle Scholar
  48. Zhang, X. and Pratt, B.R., New and Extraordinary Early Cambrian Sponge Spicule Assemblage from China, Geology, 1994, vol. 22, pp. 43–46.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  • M. A. Fedonkin
    • 1
    • 2
    • 3
  • P. Vickers-Rich
    • 1
    • 3
  • B. J. Swalla
    • 4
  • P. Trusler
    • 3
  • M. Hall
    • 3
  1. 1.Borissiak Paleontological InstituteRussian Academy of ScienceMoscowRussia
  2. 2.Geological InstituteRussian Academy of SciencesMoscowRussia
  3. 3.Monash UniversityVictoriaAustralia
  4. 4.238 Kincaid HalUniversity of WashingtonSeattleUSA

Personalised recommendations