Paleontological Journal

, Volume 44, Issue 12, pp 1570–1588 | Cite as

Origin of feathered flight

Article

Abstract

The origin of flight in birds and theropod dinosaurs is a many-sided and debatable problem. We develop a new approach to the resolution of this problem, combining terrestrial and arboreal hypotheses of the origin of flight. The bipedalism was a key adaptation for the development of flight in both birds and theropods. The bipedalism dismissed the forelimbs from the supporting function and promoted transformation into wings. For the development of true flapping avian flight, a key role was played by the initial universal anisodactylous foot of birds. This foot pattern provided a firm support on both land and trees. Theropod dinosaurs, archaeopteryxes, and some other early feathered creatures had a pamprodactylous foot and, hence, they developed only gliding descent. Early birds descended by flattering parachuting with the use of incipient wings; this gave rise to true flight. Among terrestrial vertebrates, only bats, pterosaurians, and birds developed true flapping flight, although they followed different morphofunctional pathways when solving this task. However, it remains uncertain what initiated the adaptation of the three groups for the air locomotion. Nevertheless, the past decade has provided unexpectedly abundant paleontological data, which facilitate the resolution of this question with reference to birds.

Keywords

Aves Enantiornithes Archaeopteryx Theropoda Ornithurae Mesozoic origin of flight 

References

  1. 1.
    R. Alexander, Animal Mechanics (Sidgwick and Jackson, London 1968).Google Scholar
  2. 2.
    D. E. Alexander, E. Gong, L. D. Martin, D. A. Burnham, and A. R. Falk, “Model Tests of Gliding with Different Hindwing Configurations in the Fourwinged Dromeosaurid Microraptor gui,” Proc. Nat. Acad. Sci. USA 107(7), 2972–2976 (2010).CrossRefGoogle Scholar
  3. 3.
    A. C. Bent, “Life Histories of North American Gallinaceous Birds: Family Cracidae,” Bull. US Nat. Mus. 162, 1–345 (1932).Google Scholar
  4. 4.
    W. J. Bock, “The Role of Adaptive Mechanisms in the Evolution of Higher Levels of Organization,” Syst. Zool. 14, 272–287 (1965).CrossRefGoogle Scholar
  5. 5.
    W. J. Bock, “The Arboreal Origin of Avian Flight,” Mem. Calif. Acad. Sci., No. 8, 57–72 (1986).Google Scholar
  6. 6.
    W. J. Bock, W. Miller, and W. De, “The Scansorial Foot of Woodpeckers with Comments on the Evolution of Perching and Climbing Feet in Birds,” Am. Mus. Novit., No. 1931, 1–31 (1959).Google Scholar
  7. 7.
    I. A. Bogdanovich, “Transformation of the Foot in Early Evolution of Birds,” Vestn. Zool. 34(4–5), 123–127 (2000).Google Scholar
  8. 8.
    I. A. Bogdanovich, “Interspecific Allometry of Locomotor Muscles of Birds,” Vestn. Zool. 38(4), 83–86 (2004).Google Scholar
  9. 9.
    I. A. Bogdanovich, “On Probable Mechanisms of the Formation of Locomotor Modules in the Evolution of Birds,” Vestn. Zool. 39(6), 79–82 (2005).Google Scholar
  10. 10.
    R. Broom, “On the South African Pseudosuchian Euparkeria and Allied Genera,” Proc. Zool. Soc. London 83(3) 619–633 (1913).CrossRefGoogle Scholar
  11. 11.
    V. V. Bulanov and A. G. Sennikov, “The First Gliding Reptiles from the Upper Permian of Russia,” Paleontol. J. 40(Suppl. 5), S567–S570 (2006).CrossRefGoogle Scholar
  12. 12.
    P. Burgers and L. M. Chiappe, “The Wing of Archaeopteryx As a Primary Thrust Generator,” Nature 399, 60–62 (1999).CrossRefGoogle Scholar
  13. 13.
    G. Caple, R. P. Balda, and W. R. Wills, “The Physics of Leaping Animals and the Evolution of Preflight,” Am. Natur. 121(4), 455–476 (1983).CrossRefGoogle Scholar
  14. 14.
    M. T. Carrano, “Homoplasy and the Evolution of Dinosaur Locomotion,” Paleobiology 26(3), 489–469 (2000).CrossRefGoogle Scholar
  15. 15.
    S. Chatterjee, “Cranial Anatomy and Relationships of a New Triassic Bird from Texas,” Phil. Trans. R. Soc. London Ser. B 332(1265), 277–346 (1991).CrossRefGoogle Scholar
  16. 16.
    S. Chatterjee, “The Triassic Bird Protoavis,” Archaeopteryx, No. 13, 15–31 (1995).Google Scholar
  17. 17.
    S. Chatterjee, “The Beginnings of Avian Flight,” in Dinofest International: Proceedings of a Symposium Sponsored by Arizona State University, 1996: Phoenix (Acad. Natur. Sci., Philadelphia, 1997), pp. 311–335.Google Scholar
  18. 18.
    S. Chatterjee, “Protoavis and the Early Evolution of Birds,” Palaeontographica 254(1–3), 100 (1999).Google Scholar
  19. 19.
    S. Chatterjee and R. J. Templin, “Biplane Wing Planform and Flight Performance of the Feathered Dinosaur Microraptor gui,” Proc. Nat. Acad. Sci. USA 104(5), 1576–1580 (2007).CrossRefGoogle Scholar
  20. 20.
    L. M. Chiappe, “The First 85 Million Years of Avian Evolution,” Nature 378(6555), 349–355 (1995).CrossRefGoogle Scholar
  21. 21.
    L. M. Chiappe, “Early Avian Evolution: Roundtable Report,” Smithson. Contrib. Paleobiol., No. 89, 335–340 (1999).Google Scholar
  22. 22.
    L. M. Chiappe, “Basal Bird Phylogeny: Problems and Solutions,” in Mesozoic Birds: Above the Heads of Dinosaurs, Ed. by L. M. Chiappe and L. M. Witmer (Univ. Calif. Press, Berkeley, 2002), pp. 448–472.Google Scholar
  23. 23.
    L. M. Chiappe, Glorified Dinosaurs: Origin and Evolution of Birds (Wiley and Sons, Hobokin, 2007).Google Scholar
  24. 24.
    P. Christiansen and N. Bonde, “Body Plumage in Archaeopteryx: A Review and New Evidence from the Berlin Specimen,” Comp. Ren. Palevol. 3(2), 99–118 (2004).CrossRefGoogle Scholar
  25. 25.
    J. A. Clarke, Z. Zhou, and F. Zhang, “Insight into the Evolution of Avian Flight from a New Clade of Early Cretaceous Ornithurines from China and the Morphology of Yixianornis grabaui,” J. Anat. 208, 287–308 (2006).CrossRefGoogle Scholar
  26. 26.
    W. P. Coombs, Jr., “Theoretical Aspects of Cursorial Adaptation in Dinosaurs,” Quart. Rev. Biol. 53(4), 393–418 (1978).CrossRefGoogle Scholar
  27. 27.
    R. Cowen and J. H. Lipps, “An Adaptive Scenario for the Origin of Birds and of Flight in Birds,” in Proceedings of the Third North American Paleontological Convention (Univ. Montreal, Quebec, 1982), Vol. 1, pp. 109–112.Google Scholar
  28. 28.
    Ch. Darwin, The Origin of Species by Means of Natural Selection, 6th ed. (John Murray, London, 1872).Google Scholar
  29. 29.
    G. P. Dementiev, Birds: Manual of Zoology (Akad. Nauk SSSR, Moscow, 1940), Vol. 6 [in Russian].Google Scholar
  30. 30.
    K. P. Dial, “Evolution of Avian Locomotion: Correlates of Flight Style, Locomotor Modules, Nesting Biology, Body Size, Development, and the Origin of Flapping Flight,” Auk 120(4), 941–952 (2003a).CrossRefGoogle Scholar
  31. 31.
    K. P. Dial, “Wing-assisted Incline Running and the Evolution of Flight,” Science 299(5605), 402–404 (2003b).CrossRefGoogle Scholar
  32. 32.
    K. P. Dial, B. E. Jackson, and P. Segre, “A Fundamental Avian Wing-stroke Provides a New Perspective on the Evolution of Flight,” Nature 451(7181), 985–990 (2008).CrossRefGoogle Scholar
  33. 33.
    J. O. Farlow, S. M. Gatesy, T. R. Holtz, Jr., J. R. Hutchinson, and J. M. Robinson, “Theropod Locomotion,” Am. Zool. 40(4), 640–663 (2000).CrossRefGoogle Scholar
  34. 34.
    A. Feduccia, The Origin and Evolution of Birds (Yale Univ. Press, New Haven-London, 1999).Google Scholar
  35. 35.
    A. Feduccia, L. D. Martin, S. Tarsitano, “Archaeopteryx: Quo Vadis?,” Auk 124(2), 373–380 (2007).CrossRefGoogle Scholar
  36. 36.
    C. Gao, L. M. Chiappe, Q. Meng, J. K. O’Connor, X. Wang, X. Cheng, and J. Liu, “A New Basal Lineage of Early Cretaceous Birds from China and Its Implications on the Evolution of the Avian Tail,” Palaeontology 51(4), 775–791 (2008).CrossRefGoogle Scholar
  37. 37.
    J. P. Garner, G. K. Taylor, and L. R. Thomas, “On the Origins of Birds: The Sequence of Characters Acquisition in the Evolution of Avian Flight,” Proc. R. Soc. London Ser. B 266, 1259–1266 (1999).CrossRefGoogle Scholar
  38. 38.
    S. M. Gatesy, “Caudofemoral Musculature and the Evolution of Theropod Locomotion,” Paleobiology 16, 170–186 (1990).Google Scholar
  39. 39.
    S. M. Gatesy, “Guineafowl Hind Limb Function: II. Electromiographic Analysis and Motor Pattern Evolution,” J. Morphol. 240, 127–142 (1999).CrossRefGoogle Scholar
  40. 40.
    S. M. Gatesy, “Locomotor Evolution on the Line to Modern Birds,” in Mesozoic Birds: Above the Heads of Dinosaurs, Ed. by L. M. Chiappe and L. M. Witmer (Univ. Calif. Press, Berkeley, 2002), pp. 432–447.Google Scholar
  41. 41.
    S. M. Gatesy and K. P. Dial, “From Frond to Fan: Archaeopteryx and the Evolution of Short-tailed Birds,” Evolution 50(5), 2037–2048 (1996a).CrossRefGoogle Scholar
  42. 42.
    S. M. Gatesy and K. P. Dial, “Locomotor Modules and the Evolution of Avian Flight,” Evolution 50(1), 331–340 (1996b).CrossRefGoogle Scholar
  43. 43.
    J. A. Gauthier, “Saurischian Monophyly and the Origin of Birds,” Mem. Calif. Acad. Sci., No. 8, 1–55 (1986).Google Scholar
  44. 44.
    K. Gegenbaur, Grundri (Engelmann, Leipzig, 1878).Google Scholar
  45. 45.
    J. Golonka, Cambrian-Neogene Plate Tectonic Maps (Wydawnictwo Uniw. Jagiello skiego, Kraków, 2000).Google Scholar
  46. 46.
    G. Heilmann, The Origin of Birds (Witherby, London, 1926).Google Scholar
  47. 47.
    D. Hu, L. Hou, L. Zhang, and X. Xu, “A Pre-Archaeopteryx Troodontid Theropod from China with Long Feathers on the Metatarsus,” Nature 461(7264), 640–643 (2009).CrossRefGoogle Scholar
  48. 48.
    J. R. Hutchinson, “The Evolution of Pelvic Osteology and Soft Tissues on the Line to Extant Birds (Neornithes),” Zool. J. Linn. Soc. 131, 123–168 (2001).CrossRefGoogle Scholar
  49. 49.
    J. R. Hutchinson and V. Allen, “The Evolutionary Continuum of Limb Function from Early Theropods to Birds,” Naturwissenschaften 96(4), 423–448 (2009).CrossRefGoogle Scholar
  50. 50.
    J. R. Hutchinson and S. M. Gatesy, “Adductors, Abductors, and the Evolution of Archosaur Locomotion,” Paleobiology 26(4), 734–751 (2000).CrossRefGoogle Scholar
  51. 51.
    J. R. Hutchinson and S. M. Gatesy, “Dinosaur Locomotion: Beyond the Bones,” Nature 440(7082), 292–294 (2006).CrossRefGoogle Scholar
  52. 52.
    T. H. Huxley, “On the Animals Which Are Most Nearly Intermediate between the Birds and Reptiles,” Ann. Mag. Natur. Hist. 2(2), 66–75 (1868).Google Scholar
  53. 53.
    E. A. Irisov, “A New Hypothesis for the Origin of Birds,” Russ. Ornitol. Zh. 1(1), 51–56 (1992).Google Scholar
  54. 54.
    Q. Ji, P. J. Currie, M. A. Norell, and S. Ji, “Two Feathered Dinosaurs from North-eastern China,” Nature 393(6687), 753–761 (1998).CrossRefGoogle Scholar
  55. 55.
    Q. Ji, M. A. Norell, K. Gao, S. Ji, and R. Dong, “The Distribution of Integumentary Structures in a Feathered Dinosaur,” Nature 410(6832), 1084–1088 (2001).CrossRefGoogle Scholar
  56. 56.
    S. Ji and Q. Ji, “Jinfengopteryx Compared to Archaeopteryx, with Comments on the Mosaic Evolution of Long-tailed Avialan Birds,” Acta Geol. Sin. 81(3), 337–343 (2007).Google Scholar
  57. 57.
    T. D. Jones, J. O. Farlow, J. A. Ruben, D. M. Hender- son, and W. J. Hillenius, “Cursoriality in Bipedal Archosaurs,” Nature 406(6797), 716–718 (2000).CrossRefGoogle Scholar
  58. 58.
    M. F. Kovtun, Structure and Evolution of Locomotor Organs of Chiropters (Naukova Dumka, Kiev, 1984) [in Russian].Google Scholar
  59. 59.
    M. F. Kovtun, O. V. Shatkovs’ka, and Yu. V. Shatkovs’kii, “Establishments of the Altricial Developmental Type of Birds,” Vestn. Zool. 37(2), 51–59 (2003).Google Scholar
  60. 60.
    T. Kubo and M. J. Benton, “Evolution of Hindlimb Posture in Archosaurs: Limb Stress in Extinct Vertebrates,” Palaeontology 50(6), 1519–1529 (2007).CrossRefGoogle Scholar
  61. 61.
    E. N. Kurochkin, “A New Avian Order from the Lower Cretaceous of Mongolia,” Dokl. Akad. Nauk SSSR 262(2), 452–455 (1982).Google Scholar
  62. 62.
    E. N. Kurochkin, “Synopsis of Mesozoic Birds and Early Evolution of Class Aves,” Archaeopteryx, No. 13, 47–66 (1995).Google Scholar
  63. 63.
    E. N. Kurochkin, A New Enantiornithid of the Mongolian Late Cteraceous, and a General Appraisal of the Infraclass Enantiornithes (Aves) (Paleontol. Inst. Ross. Akad. Nauk, Moscow, 1996), Special Issue.Google Scholar
  64. 64.
    E. N. Kurochkin, “The Relationships of the Early Cretaceous Ambiortus and Otogornis (Aves: Ambiortiformes),” Smithson. Contrib. Paleobiol., No. 89, 275–284 (1999).Google Scholar
  65. 65.
    E. N. Kurochkin, “New Ideas about the Origin and Early Evolution of Birds,” in Achievements and Problems of Ornithology of Northern Eurasia on the Eve of the New Century: Proceedings of the International Conference on the Urgent Problems of the Study and Preservation of Birds of Eastern Europe and Northern Asia, Republic Tatarstan, January 29–February 3, 2001, Ed. by E. N. Kurochkin and I. I. Rakhimov (MAGARIF, Kazan, 2001), pp. 68–96 [in Russian].Google Scholar
  66. 66.
    E. N. Kurochkin, “Basal Diversification of Feathered Creatures,” in Evolution of the Biosphere and Biodiversity, Ed. by S. V. Rozhnov (KMK, Moscow, 2006a), pp. 219–232 [in Russian].Google Scholar
  67. 67.
    E. N. Kurochkin, “Parallel Evolution of Theropod Dinosaurs and Birds,” Zool. Zh. 85(3), 283–297 (2006b).Google Scholar
  68. 68.
    E. N. Kurochkin and I. A. Bogdanovich, “On the Origin of Avian Flight: Compromise and System Approaches,” Izv. Ross. Akad. Nauk, Ser. Biol., No. 1, 5–17 (2008a) [Biol. Bull. 35 (1), 1–11 (2008a)].Google Scholar
  69. 69.
    E. N. Kurochkin and I. A. Bogdanovich, “Morphofunctional Evolution of the Locomotor Apparatus of Birds and the Origin of Flight,” in Modern Problems of Biological Evolution: Proceedings of the Conference Devoted to 100th Anniversary of State Darwinian Museum, (Gos. Darvin. Muz., Moscow, 2008b), pp. 39–76 [in Russian].Google Scholar
  70. 70.
    A. Lacasa-Ruiz, “Hypothetical Beginnings of Feathers in Continental Aquatic Palaeoenvironments,” Terra Nova Oxford. 5, 612–615 (1993).CrossRefGoogle Scholar
  71. 71.
    Lianhai Hou, Mesozoic Birds of China (Taiwan Fenghuang Bird Garden, Lugu, 1997).Google Scholar
  72. 72.
    Lianhai Hou and Zhicheng Liu, “A New Fossil Bird from Lower Cretaceous of Gansu and Early Evolution of Birds,” Sci. Sin. Ser. B 27(12), 1296–1302 (1984).Google Scholar
  73. 73.
    Ch. A. Long, G. P. Zhang, T. F. George, and C. F. Long, “Physical Theory, Origin of Flight, and a Synthesis Proposed for Birds,” J. Theor. Biol. 224, 9–26 (2003).CrossRefGoogle Scholar
  74. 74.
    N. Longrich, “Structure and Function of Hindlimb Feathers in Archaeopteryx lithographica,” Paleobiology 32(3), 417–431 (2006).CrossRefGoogle Scholar
  75. 75.
    S. A. Loparev, “Probable Adaptive Significance of the Open Pelvis of Birds and New Hypothesis for the Origin of Flight,” Berkut 5(2), 216–230 (1996).Google Scholar
  76. 76.
    O. C. Marsh, “Introduction and Succession of Vertebrate Life in America,” Proc. Am. Ass. Adv. Sci., pp. 211–258 (1877).Google Scholar
  77. 77.
    L. D. Martin, “The Origin of Birds and of Avian Flight,” in Current Ornithology (New York-London, Plenum Press, 1983), Vol. 1, pp. 105–129.Google Scholar
  78. 78.
    L. D. Martin, “The Enantiornithes: Terrestrial Birds of the Cretaceous,” Cour. Forshungsinst. Senckenb. 181, 23–36 (1995).Google Scholar
  79. 79.
    L. D. Martin, “A Basal Archosaurian Origin of Birds,” Acta Zool. Sin. 50, 978–990 (2004).Google Scholar
  80. 80.
    L. D. Martin, “Origin of Avian Flight,” Oryctos 7, 45–54 (2008).Google Scholar
  81. 81.
    G. Mayr, B. Pohl, and D. S. Peters, “A Well Preserved Archaeopteryx Specimen with Theropod Features,” Science 310(5753), 1483–1486 (2005).CrossRefGoogle Scholar
  82. 82.
    R. N. Melchor, S. de Valis, and J. F. Genise, “Bird-like Fossil Footprints from the Late Triassic,” Nature 417(6892), 936–938 (2002).CrossRefGoogle Scholar
  83. 83.
    E. M. Morschhauser, D. J. Varricchio, C. Gao, C. Liu, X. Wang, X. Cheng, and Q. Meng, “Anatomy of the Early Cretaceous Bird Rapaxavis pani, a New Species from Liaoning Province, China,” J. Vertebr. Paleontol. 29(2), 545–554 (2009).CrossRefGoogle Scholar
  84. 84.
    G. B. Müller and J. Streicher, “Ontogeny of the Syndesmosis Tibiofibularis and the Evolution of the Bird Hind Limb: A Caenogenetic Feature Triggers Phenotypic Novelty,” Anat. Embryol. 179, 327–339 (1989).CrossRefGoogle Scholar
  85. 85.
    L. A. Nessov and A. A. Yarkov, “New Birds from the Cretaceous-Paleogene of the Soviet Union and Some Remarks on the Origin and Evolution of the Class Aves,” Tr. Zool. Inst. Akad. Nauk SSSR 197, 78–97 (1989).Google Scholar
  86. 86.
    F. Nopsca, “Ideas on the Origin of Flight,” Proc. Zool. Soc. London 15, 223–226 (1907).Google Scholar
  87. 87.
    U. M. Norberg, “Bird Flight,” Acta Zool. Sin. 50, 921-935 (2004).Google Scholar
  88. 88.
    M. A. Norell and P. J. Makovicky, “Important Features of the Dromeosaurid Skeleton: II. Information from the Newly Collected Specimen of Velociraptor mongoliensis,” Am. Mus. Novit., No. 3282, 1–45 (1999).Google Scholar
  89. 89.
    B. O’Farell, J. Davenport, and T. Kelly, “Was Archaeopteryx a Wing-in-Ground Effect Flier?,” Ibis 144, 686–688 (2002).CrossRefGoogle Scholar
  90. 90.
    H. F. Osborn, “Reconsideration of the Evidence for a Common Dinosaur Avian Stem in the Permian,” Am. Natur. 34, 777–799 (1900).CrossRefGoogle Scholar
  91. 91.
    J. H. Ostrom, “Archaeopteryx and the Origin of Birds,” Biol. J. Linn. Soc. 8, 91–182 (1976).CrossRefGoogle Scholar
  92. 92.
    J. H. Ostrom, “Bird Flight: How Did It Begin?,” Am. Sci. 67, 46–56 (1979).Google Scholar
  93. 93.
    J. H. Ostrom, How Bird Flight Might Have Come About, Ed. by D. L. Wolberg, E. Stump, and G. D. Rosenberg in Dinofest International: Proceedings of a Symposium Sponsored by Arizona State University, 1996: Phoenix (Acad. Natur. Sci., Philadelphia, 1997), pp. 301–310.Google Scholar
  94. 94.
    J. H. Ostrom, S. O. Poore, and G. E. Goslow, “Humeral Rotation and Wrist Supination: Important Functional Complex for the Evolution of Powered Flight in Birds?,” Smithson. Contrib. Paleobiol., No. 89, 301–309 (1999).Google Scholar
  95. 95.
    K. Padian, “A Functional Analysis of Flying and Walking in Pterosaurs,” Paleobiology 9, 218–239 (1983).Google Scholar
  96. 96.
    K. Padian and L. M. Chiappe, “The Origin of Birds and Their Flight,” Sci. Am. 278, 28–37 (1998a).CrossRefGoogle Scholar
  97. 97.
    K. Padian and L. M. Chiappe, “The Origin and Early Evolution of Birds,” Biol. Rev. Cambridge Phil. Soc. 73, 1–42 (1998b).CrossRefGoogle Scholar
  98. 98.
    G. S. Paul, Dinosaurs of the Air: The Evolution and Loss of Flight in Dinosaurs and Birds (Johns Hopkins Univ. Press, Baltimore-London, 2002).Google Scholar
  99. 99.
    D. S. Peters, “Die Lage der Vogelsystematik-Fortschritte und immanente Hemnisse,” J. Ornithol. 141, 263–274 (2000).CrossRefGoogle Scholar
  100. 100.
    D. S. Peters, “Anagenesis of Early Birds Reconsidered,” Senckenb. Lethaea 82(1/2), 347–354 (2002).CrossRefGoogle Scholar
  101. 101.
    R. J. Raikow, “Locomotor System,” in Form and Function in Birds (New York-London, Academia, 1985), Vol. 3, pp. 57–146.Google Scholar
  102. 102.
    J. M. V. Rayner, “Cursorial Gliding in Protobirds: An Expanded Version of a Discussion Contribution,” in The Beginning of Birds Ed. by J. H. Ostrom, M. K. Hecht, G. Viohl, and P. Wellnhofer (Brönner and Daentler KG, Eichstätt, 1985), pp. 289–302.Google Scholar
  103. 103.
    S. Renesto, “Megalancosaurus, a Possibly Arboreal Archosauromorph (Reptilia) from the Upper Triassic of Northern Italy,” J. Vertebr. Paleontol. 14, 38–52 (1994).CrossRefGoogle Scholar
  104. 104.
    A. S. Romer, “The Ilium in Dinosaurs and Birds,” Bull. Am. Mus. Nat. Hist. 48, 141–145 (1923).Google Scholar
  105. 105.
    J. L. Sanz and J. F. Bonaparte, “A New Order of Birds (Class Aves) from the Lower Cretaceous of Spain,” Nat. Hist. Mus. Los Angeles Co. Sci. Ser., No. 36, 40–49 (1992).Google Scholar
  106. 106.
    J. C. Sanz and A. D. Buscalioni, “A New Bird from the Early Cretaceous of Las Hoyas, Spain, and the Early Radiation of Birds,” Palaeontology 35, 829–845 (1992).Google Scholar
  107. 107.
    S. A. Saveliev, The Origin of Brain (VEDI, Moscow, 2005) [in Russian].Google Scholar
  108. 108.
    K. Schmidt-Nielsen, The Sizes of Animals: Why Are They So Important? (Cambridge Univ. Press, London, 1984).Google Scholar
  109. 109.
    H. G. Seeley, “An Epitome of the Evidence That Pterodactyles Are not Reptiles, but a New Subclass of Vertebrate Animals Allied to Birds (Saurornia),” Ann. Mag. Natur. Hist. 3rd Ser. 17, 321–331 (1866).Google Scholar
  110. 110.
    A. G. Sennikov, “The Major Evolutionary Patterns of the Development of the Locomotor Apparatus of Archosaurs,” Paleontol. Zh., No. 4, 63–72 (1989).Google Scholar
  111. 111.
    P. Senter, “Scapular Orientation in Theropods and Basal Birds, and the Origin of Flapping Flight,” Acta Palaeontol. Polon. 51, 305–313 (2006).Google Scholar
  112. 112.
    P. Senter, R. Barsbold, B. B. Britt, and D. A. Burnham, “Systematics and Evolution of Dromeosauridae (Dinosauria, Theropoda),” Bull. Gunma Mus. Natur. Hist. 8, 1–20 (2004).Google Scholar
  113. 113.
    P. C. Sereno, “Iberomesornis romerali (Aves, Ornithothoraces) Reevaluates As an Early Cretaceous Enantiornithine,” Neues Jahrb. Geol. Paläontol. Abh. 215, 365–395 (2000).Google Scholar
  114. 114.
    P. C. Sereno, C. Rao, and J. Li, “Sinornis santensis (Aves: Enantiornithes) from the Early Cretaceous of Northeastern China,” in Mesozoic Birds: Above the Heads of Dinosaurs, Ed. by L. M. Chiappe and L. M. Witmer (Univ. Calif. Press, Berkeley, 2002), pp. 184–208.Google Scholar
  115. 115.
    A. N. Severtsov, Morphological Patterns of Evolution (Akad. Nauk SSSR, Moscow-Leningrad, 1939) [in Russian].Google Scholar
  116. 116.
    P. Shipman, Taking Wing: Archaeopteryx and the Evolution of Bird Flight (Weidenfeld and Nicolson, London, 1998).Google Scholar
  117. 117.
    M. A. Shishkin, “About Sergei Viktorovich Meyen: Fragments of Memory and Reflection about Evolution,” in In Memory of Sergei Viktorovich Meyen (70th Anniversary of the Birthday, Ed. by M. A. Akhmetiev and A. B. Herman (GEOS, Moscow, 2005), pp. 34–45 [in Russian].Google Scholar
  118. 118.
    M. A. Shishkin, “Ontogeny and Lessons of Evolutionism,” Ontogenez 37(3), 179–198 (2006).Google Scholar
  119. 119.
    M. Stolpe, “Physiologish-anatomische Untersuchungen über die hintere Extremitat der Vögel,” J. Ornithol. 80, 161–247 (1932).CrossRefGoogle Scholar
  120. 120.
    V. B. Sukhanov, General System of Symmetric Locomotion in Terrestrial Vertebrates (Nauka, Leningrad, 1968) [in Russian].Google Scholar
  121. 121.
    V. F. Sych, V. F. Moroz, and I. A. Bogdanovich, “On Experimental Study of Bipedal Locomotion of Birds,” Vestn. Zool., No. 3, 79–81 (1985).Google Scholar
  122. 122.
    A. L. Takhtajan, Higher Plants. (Izd. Akad. Nauk SSSR, Moscow-Leningrad, 1956), Vol. 1 [in Russian].Google Scholar
  123. 123.
    S. Tarsitano and M. K. Hecht, “A Reconsideration of the Reptilian Relationships of Archaeopteryx,” Zool. J. Linn. Soc. 69, 149–182 (1980).CrossRefGoogle Scholar
  124. 124.
    R. A. Thulborn and T. L. Hamley, “A New Palaeoecological Role for Archaeopteryx,” in The Beginning of Birds Ed. by J. H. Ostrom, M. K. Hecht, G. Viohl, and P. Wellnhofer (Brönner and Daentler KG, Eichstätt, 1985), pp. 81–89.Google Scholar
  125. 125.
    A. D. Walker, “Evolution of the Pelvis in Birds and Dinosaurs,” in Linnean Society Symposium on the Problems in Vertebrate Evolution, Ed. by S. M. Andrews, R. S. Miles, and A. D. Walker (Academic, London, 1977), Ser. 4, pp. 319–358.Google Scholar
  126. 126.
    S. W. Williston, Are Birds Derived from Dinosaurs? (Kansas City Rev. Sci., 1879), pp. 457–460.Google Scholar
  127. 127.
    X. Xu and F. Zhang, “A New Maniraptoran Dinosaur from China with Long Feathers on the Metatarsus,” Naturwissenschaften 92, 173–177 (2005).CrossRefGoogle Scholar
  128. 128.
    X. Xu, Q. Zhao, M. Norell, C. Sullivan, D. Hone, G. Ericson, X Wang., F. Han, and Y. Guo, “A New Feathered Maniraptoran Dinosaur Fossil That Fills a Morphological Gap in Avian Origin,” Chin. Sci. Bull. 54 (3), 430–435 (2009).Google Scholar
  129. 129.
    X. Xu, Z. Zhou, X. Wang, X. Kuang, F. Zhang, and X. Du, “Four-winged Dinosaurs from China,” Nature 421(6921), 335–340 (2003).CrossRefGoogle Scholar
  130. 130.
    V. E. Yakobi, “Mechanization and Automatism of the Wing of Birds,” in Mechanisms of Flight and Orientation of Birds, Ed. by S. E. Kleinenberg (Nauka, Moscow, 1966), pp. 27–50 [in Russian].Google Scholar
  131. 131.
    N. A. Yasamanov, Popular Scientific Paleogeography (Nedra, Moscow, 1985) [in Russian].Google Scholar
  132. 132.
    H. You, M. C. Lamanna, J. D. Harris, L. M. Chiappe, J. O’Connor, S. Ji, J. Lü, C. Yuan, D. Li, X. Zhang, K. J. Lacovara, P. Dodson, and Q. Ji, “A Nearly Modern Amphibious Bird from the Early Cretaceous of Northwestern China,” Science 312(5780), 1640–1643 (2006).CrossRefGoogle Scholar
  133. 133.
    F. Zhang, P. G. P. Ericson, and Z. Zhou, “Description of a New Enantiornithine Bird from the Early Cretaceous of Hebei, Northern China,” Can. J. Earth Sci. 41, 1097–1107 (2004).CrossRefGoogle Scholar
  134. 134.
    F. Zhang and Z. Zhou, “A Primitive Enantiornithine Bird and the Origin of Feathers,” Science 290(5498), 1955–1959 (2000).CrossRefGoogle Scholar
  135. 135.
    F. Zhang and Z. Zhou, “Leg Feathers in an Early Cretaceous Bird,” Nature 431(7011), 925 (2004).CrossRefGoogle Scholar
  136. 136.
    Z. Zhang, L. Hou, Y. Hasegawa, J. O’Connor, L. D. Martin, and L. M. Chiappe, “The First Mesozoic Heterodactyl Bird from China,” Acta Geol. Sin. 80, 631–635 (2006).Google Scholar
  137. 137.
    Z. Zhou, “The Discovery of Early Cretaceous Birds in China,” Cour. Forshungsinst. Senckenb. 181, 9–22 (1995).Google Scholar
  138. 138.
    Z. Zhou, L. M. Chiappe, and F. Zhang, “Anatomy of Early Cretaceous Bird Eoenantiornis buhleri (Aves: Enantiornithes) from China,” Can. J. Earth Sci. 42, 1331–1338 (2005).CrossRefGoogle Scholar
  139. 139.
    Z. Zhou and J. O. Farlow, “Flight Capability and Habits of Confuciusornis,”iin New Perspectives on the Origin and Early Evolution of Birds, Ed. by J. Gauthier and L. F. Gall (Peabody Mus. Nat. Hist. Yale Univ., New Haven, 2001), pp. 237–254.Google Scholar
  140. 140.
    Z. Zhou and F. Zhang, “Two New Ornithurine Birds from the Early Cretaceous of Western Liaoning, China,” Chin. Sci. Bull. 46, 1258–1264 (2001).CrossRefGoogle Scholar
  141. 141.
    Z. Zhou and F. Zhang, “Discovery of an Ornithurine Bird and Its Implication for Early Cretaceous Avian Radiation,” Proc. Nat. Acad. Sci. 102, 18999–19002 (2005).Google Scholar
  142. 142.
    Z. Zhou and F. Zhang, “A Beaked Basal Ornithurine Bird (Aves, Ornithurae) from Lower Cretaceous of China,” Zool. Scr. 35, 363–373 (2006).CrossRefGoogle Scholar
  143. 143.
    Z. Zhou, F. Zhang, and Z. Li, “A New Basal Bird (Jianchangornis microdonta gen. et sp. nov.) from the Lower Cretaceous of China,” Vertebr. Palasiat. 47(4), 299–310 (2009).Google Scholar
  144. 144.
    A. V. Zinoviev, “Types of Interaction of Terminal Tendons of the Long Profound Flexors of Bird’s Toes and Their Probable Genesis,” Zool. Zh. 87(2), 197–205 (2008).Google Scholar
  145. 145.
    A. V. Zinoviev, “An Attempt to Reconstruct the Lifestyle of Confuciusornithids (Aves, Confuciusornithiformes),” Paleontol. Zh., No. 4, 83–91 (2009) [Paleontol. J. 43 (4), 444–452 (2009)].Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  1. 1.Borissiak Paleontological InstituteRussian Academy of SciencesMoscowRussia
  2. 2.Schmalhausen Institute of ZoologyNational Academy of Sciences of UkraineKievUkraine

Personalised recommendations