Paleontological Journal

, Volume 44, Issue 11, pp 1379–1466 | Cite as

Systematics of fossil platanoids and hamamelids

  • N. P. Maslova


The data on fossil platanoids and hamamelids are generalized, their morphological diversity and probable patterns of the establishment of the extant families Platanaceae and Hamamelidaceae are analyzed. It is shown that morphological and epidermal characters of polymorphic leaves of typical platanoid appearance were formed in the Late Albian and remained essentially invariable to the present time, indicating the morphological stasis of these leaves combined with a wide variation range. In view of association with essentially different reproductive structures, it is proposed to classify these leaves by the morphological system irrespective of the natural system of angiosperms. A new system of extinct platanoids and hamamelids, which is based on reproductive structures and includes two orders, Hamamelidales and Sarbaicarpales ordo. nov., is proposed. Hamamelidales comprises two extant families, Platanaceae (with the subfamilies Platanoideae subfam. nov. and Gynoplatananthoideae subfam. nov.) and Hamamelidaceae, and the extinct family Bogutchanthaceae fam. nov.; the new extinct order Sarbaicarpales ordo. nov. consists of two new families, Sarbaicarpaceae fam. nov. and Kasicarpaceae fam. nov. In a system of flowering plants that is based on molecular data, the families Platanaceae and Hamamelidaceae are assigned to remote orders, excluding close relationship (APG, 2003). At the same time, the system of APG II often contradicts morphological and paleontological data, while traditional ideas of morphologists concerning the common origin of these families have recently been supported by paleobotanic evidence. Probable origin of the families Platanaceae and Hamamelidaceae from a common polymorphic ancestral group is discussed.

Key words

Fossil platanoids fossil hamamelids Platanaceae Hamamelidaceae leaves reproductive structures systematics 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    T. M. Alekseenko and V. A. Krassilov, “Epidermal Structure and Taxonomic Position of Oaks with Lobate Leaves from the Miocene of the Primorsky Region,” Paleontol. Zh., No. 3, 118–124 (1980).Google Scholar
  2. 2.
    E. Andersen and K. Sax, “Chromosome Numbers in the Hamamelidaceae and Their Phylogenetic Significance,” J. Arnold Arbor 16(2), 210–215 (1935).Google Scholar
  3. 3.
    Angiosperm Phylogeny Group (APG, 2003), “An Update of the Angiosperm Phylogeny Group Classification for the Orders and Families of the Flowering Plants: APG II,” Bot. J. Linn. Soc. 141, 399–436 (2003).Google Scholar
  4. 4.
    A. S. Antonov, “Whether or not There Are Molecular Prerequisites for Revision of Phylogeny and System of Higher Plants,” Zh. Obshch. Biol. 60(3), 245–276 (1999).Google Scholar
  5. 5.
    A. S. Antonov, “On Possible Causes of Disagreement between Viewpoints of Phene and Gene Systematics of Phylogeny and System of Higher Plants,” Botan. Zh. 85(1), 3–11 (2000).Google Scholar
  6. 6.
    A. S. Antonov, “On Some ‘Molecular’ Systems of Flowering Plants,” Botan. Zh. 91(2), 169–175 (2006).Google Scholar
  7. 7.
    A. S. Antonov, Gene Systematics of Plants (Akademkniga, Moscow, 2007) [in Russian].Google Scholar
  8. 8.
    A. S. Antonov and A. V. Troitsky, “The Results of Evolutionary Study of rRNA in Plants Cast Doubt on the Universality of the Hypothesis of “Molecular Clock”,” Zh. Evol. Biokhim. Fiziol. 22(4), 343–350 (1986).Google Scholar
  9. 9.
    P. Baas, “Comparative Anatomy of Platanus kerrii Gagnep.,” Bot. J. Linn. Soc. 62, 413–421 (1969).Google Scholar
  10. 10.
    D. Barabé, “Application of Cladism to the Systematics of Angiosperms: Case of the Hamamelidales,” Candollea 39, 51–70 (1984).Google Scholar
  11. 11.
    D. Barabé, Y. Bergeron, and G. A. Vincent, “Relations phénétiques entre les familles d’Hamamelididae,” Experientia 37, 135–136 (1981).Google Scholar
  12. 12.
    D. Barabé, Y. Bergeron, and G. A. Vincent, “Etude quantitative de la classification des Hamamelididae,” Taxon 31(4), 619–645 (1982).Google Scholar
  13. 13.
    J. Benedict, K. B. Pigg, and M. L. De Vore, “Hamawilsonia boglei gen. et sp. nov. (Hamamelidaceae) from the Late Paleocene Almont Flora of Central North Dakota,” Int. J. Plant Sci. 169(5), 687–700 (2008).Google Scholar
  14. 14.
    G. Bentham and J. D. Hooker, Genera plantarum (Reeve, London, 1865), Vol. 1.Google Scholar
  15. 15.
    E. W. Berry, “Notes on the Geologic History of Platanus,” Pl. World 17, 1–8 (1914).Google Scholar
  16. 16.
    K. Binka, J. Nitychoruk, and J. Dzierzek, “Parrotia persica C.M.A. (Persian Witch Hazel, Persian Ironwood) in the Mazovian (Holsteinian) Interglacial of Poland,” Grana 42, 227–233 (2003).Google Scholar
  17. 17.
    C. L. Blume, Flora Javae nec non insularum adjacentium (J. Frank, Brussels, 1828).Google Scholar
  18. 18.
    V. K. Bobrova, V. A. Troitsky, and Yu. F. Melekhovets, “Nucleotide Sequences of Chloroplast 4.5S rRNA of Mnium rugicum and Marchantia polymorpha: Distinctions in Evolutionary Rates of Bryophyta and Angiosperms,” Dokl. Akad. Nauk SSSR 281, 193–195 (1987).Google Scholar
  19. 19.
    A. L. Bogle, “Floral Morphology and Vascular Anatomy of the Hamamelidaceae: The Apetalous Genera of Hamamelidoideae,” J. Arnold Arbor 51, 310–366 (1970).Google Scholar
  20. 20.
    A. L. Bogle, “Floral Morphology and Vascular Anatomy of Maingaya Oliv. (Hamamelidaceae, Hamamelidoideae, Hamamelideae),” Am. J. Bot. 71(5, Part 2), 19 (1984).Google Scholar
  21. 21.
    A. L. Bogle, “The Floral Morphology and Vascular Anatomy of the Hamamelidaceae: Subfamily Liquidambaroideae,” Ann. Missouri Bot. Gard. 73(2), 325–347 (1986).Google Scholar
  22. 22.
    A. L. Bogle, “Inflorescence and Flower Ontogeny in the Pseudanthium of Rhodoleia (Hamamelidaceae),” Am. J. Bot. 74, 607–608 (1987).Google Scholar
  23. 23.
    A. L. Bogle and C. T. Philbrick, “A Generic Atlas of Hamamelidaceous Pollen,” Contrib. Gray Herb., No. 210, 29–103 (1980).Google Scholar
  24. 24.
    M. C. Boulter and Z. Kvaček, “The Palaeocene Flora of the Isle of Mull,” Paleontol. Ass. London, Spec. Pap., No. 42, 1–149 (1989).Google Scholar
  25. 25.
    D. W. Brett, “Ontogeny and Classification of the Stomatal Complex of Platanus L.,” Ann. Bot. (Cr. Brit.). 44, 249–251 (1979).Google Scholar
  26. 26.
    E. Bretzler, “Beitrage zur Kenntniss der Gattung Platanus,” Bot. Arch. 7, 388–417 (1924).Google Scholar
  27. 27.
    J. Brouwer, “Studies in Platanaceae,” Rec. Trav. Bot. Neerlandais 21, 369–382 (1924).Google Scholar
  28. 28.
    R. W. Brown, “Alterations in Some Fossil and Living Floras,” J. Wash. Acad. Sci. 36, 344–355 (1946).Google Scholar
  29. 29.
    L. Yu. Budantsev, “History of the Arctic Flora in the Early Cenophytic” (Leningrad, Nauka, 1983).Google Scholar
  30. 30.
    L. Yu. Budantsev, “The Late Eocene Flora of the Western Kamchatka Peninsula,” Tr. Botan. Inst. Ross. Akad. Nauk, No. 19 (1997).Google Scholar
  31. 31.
    Č. Bůžek, F. Holy, and Z. Kvaček, “Eine bemerkenswerte Art der Familie Platanaceae Lindl. (1836) in nordbóhmischen Tertiär,” Monat. Deutschl. Akad. Wissens., Berlin 9, 203–215 (1967).Google Scholar
  32. 32.
    R. J. Carpenter, R. S. Hill, and G. J. Jordan, “Leaf Cuticular Morphology Links Platanaceae and Proteaceae,” Int. J. Plant Sci. 166(5), 843–855 (2005).Google Scholar
  33. 33.
    H. T. Chang, “A Revision of the Hamamelidaceous Flora of China,” Bull. Sunyatsen Univ. 1, 54–71 (1973).Google Scholar
  34. 34.
    Ts.-T. Chang, “Pollen Morphology in the Families Hamamelidaceae and Altingiaceae,” Tr. Botan. Inst. Akad. Nauk SSSR, Ser. 1, No. 13, 173–232 (1964).Google Scholar
  35. 35.
    M. K. Chase, D. E. Soltis, R. G. Olmstead, et al., “Phylogenetics of Seed Plants: An Analysis of Nucleotide Sequences from the Plastid Gene rbcL,” Ann. Missouri Bot. Gard. 80(3), 528–580 (1993).Google Scholar
  36. 36.
    Comparative Anatomy of Seeds: The Dicotyledon Caryophyllidae-Dilleniidae, Ed. by A. L. Takhtajan (Nauka, Leningrad, 1991), Vol. 3 [in Russian].Google Scholar
  37. 37.
    P. R. Crane, “Paleobotanical Evidence on the Early Radiation of Nonmagnoliid Dicotyledons,” Pl. Syst. Evol. 162, 165–191 (1989).Google Scholar
  38. 38.
    P. R. Crane, S. R. Manchester, and D. L. Dilcher, “Morphology and Phylogenetic Significance of the Angiosperm Platanites hybridicus from the Palaeocene of Scotland,” Palaeontology 31, 503–517 (1988).Google Scholar
  39. 39.
    P. R. Crane, K. R. Pedersen, E. M. Friis, and A. N. Drinnan, “Early Cretaceous (Early to Middle Albian) Platanoid Inflorescences Associated with Sapindopsis Leaves from the Potomac Group of Eastern North America,” Syst. Bot. 18(2), 328–344 (1993).Google Scholar
  40. 40.
    W. L. Crepet and K. Nixon, “The Fossil History of Stamina,” in The Anther: Form, Function and Phylogeny, Ed. by G. D’Arcy and R. C. Keating (Cambridge Univ. Press, Cambridge, 1996), pp. 25–57.Google Scholar
  41. 41.
    W. L. Crepet, K. C. Nixon, E. M. Friis, and J. V. Freudenstein, “Oldest Fossil Flowers of Hamamelidaceous Affinity, from the Late Cretaceous of New Jersey,” Proc. Nat. Acad. Sci. USA 89, 8986–8989 (1992).Google Scholar
  42. 42.
    A. Cronquist, “The Evolution and Classification of Flowering Plants,” (Columbia Univ. Press, New York, 1968).Google Scholar
  43. 43.
    A. Cronquist, An Integrated System of Classification of Flowering Plants (Columbia Univ. Press, New York, 1981).Google Scholar
  44. 44.
    R. Dahlgren, “A System of Classification of the Angiosperms to Be Used to Demonstrate the Distribution of Characters,” Bot. Not. 128, 119–147 (1975).Google Scholar
  45. 45.
    R. M. T. Dahlgren, “A Revised System of Classification of the Angiosperms,” Bot. J. Linn. Soc. 80, 91–124 (1980).Google Scholar
  46. 46.
    A. De Candolle, Prodromus systematis naturalis Regni vegetabilis 11, 1–16 (1864).Google Scholar
  47. 47.
    M. B. Deng, H. T. Wei, and X. Q. Wang, “Shaniodendron, a New Genus of Hamamelidaceae from China,” Acta Phytotax. Sin. 30, 57–61 (1992).Google Scholar
  48. 48.
    T. Denk and M. V. Tekleva, “Comparative Pollen Morphology and Ultrastructure of Platanus: Implications for Phylogeny and Evaluation of the Fossil Record,” Grana 45, 195–221 (2006).Google Scholar
  49. 49.
    P. I. Dorofeev, Tertiary Floras of Western Siberia (Akad. Nauk SSSR, Moscow-Leningrad, 1963) [in Russian].Google Scholar
  50. 50.
    A. W. Douglas and D. W. Stevenson, “The Reproductive Architecture of Platanaceae: Evolutionary Transformations Based on Fossil and Extant Evidence,” Am. J. Bot. 85(Suppl.), 7 (1998).Google Scholar
  51. 51.
    A. B. Doweld, “Carpology, Seed Anatomy and Taxonomic Relationships of Tetracentron (Tetracentraceae) and Trochodendron (Trochodendraceae),” Ann. Bot. 82, 413–443 (1998).Google Scholar
  52. 52.
    J. A. Doyle and P. K. Endress, “Morphological Phylogenetic Analysis of Basal Angiosperms: Comparison and Combination with Molecular Data,” Int. J. Plant Sci. 161(Suppl.), 121–153 (2000).Google Scholar
  53. 53.
    A. N. Drinnan, P. R. Crane, and S. B. Hoot, “Patterns of Floral Evolution in the Early Diversification of Non-magnoliid Dicotyledons (Eudicots),” Plant Syst. Evol. Suppl. 8, 93–122 (1994).Google Scholar
  54. 54.
    M. R. Duvall and A. B. Ervin, “18 S Gene Trees Are Positively Misleading for Monocot/Dicot Phylogenies,” Mol. Phylogenet. Evol. 30, 93–106 (2004).Google Scholar
  55. 55.
    S. Endo, “On the Genus Platanus from Hokkaido, Japan,” Trans. Proc. Palaeontol. Soc. Japan N. S., No. 50, 65–69 (1963).Google Scholar
  56. 56.
    P. K. Endress, “Die Infloreszenzen der apetalen Hamamelidaceen, ihre grundsatzliche morphologische und systematische Bedeutung,” Bot. Jahrb. 90(1–2), 1–54 (1970).Google Scholar
  57. 57.
    P. K. Endress, “Evolutionary Trends in the Hamamelidales-Fagales-Group,” Pl. Syst. Evol., No. Suppl. 1, 321–347 (1977).Google Scholar
  58. 58.
    P. K. Endress, “Aspects of Evolutionary Differentiation of the Hamamelidaceae and the Lower Hamamelididae,” Pl. Syst. Evol. 162, 193–211 (1989a).Google Scholar
  59. 59.
    P. K. Endress, “A Suprageneric Taxonomic Classification of the Hamamelidaceae,” Taxon 38, 371–376 (1989b).Google Scholar
  60. 60.
    P. K. Endress, “Phylogenetic Relationships in the Hamamelidoideae,” in Systematics Association Special, Vol. 40A: Evolution, Systematics and Fossil History of the Hamamelidae: 1. Introduction and ‘Lower’ Hamamelidae, Ed. by P. R. Crane and S. Blackmore (Oxford Univ. Press, New York, 1989), pp. 227–248.Google Scholar
  61. 61.
    P. K. Endress and E. M. Friis, “Archamamelis, Hamamelidalean Flowers from the Upper Cretaceous of Sweden,” Pl. Syst. Evol. 175, 101–114 (1991).Google Scholar
  62. 62.
    P. K. Endress, B. P. M. Hyland, and J. G. Tracey, “Noahdendron, a New Australian Genus of the Hamamelidaceae,” Bot. Jahrb. Syst. 107(1–4), 369–378 (1985).Google Scholar
  63. 63.
    P. K. Endress and A. Igersheim, “Gynoecium Diversity and Systematics of the Basal Eudicots,” Bot. J. Linn. Soc. 130, 305–393 (1999).Google Scholar
  64. 64.
    W. R. Ernst, “The Genera of Hamamelidaceae and Platanaceae in the Southeastern United States,” J. Arnold Arbor. Harv. Univ. 44, 193–210 (1963).Google Scholar
  65. 65.
    Y. M. Fang and R. W. Fan, “Variation and Evolution of Leaf Trichomes in the Chinese Hamamelidaceae,” Acta Phytotax. Sin. 31(2), 147–152 (1993).Google Scholar
  66. 66.
    D. K. Ferguson, “A Survey of the Liquidambaroideae (Hamamelidaceae) with a View to Elucidating Its Fossil Record,” in Evolution, Systematics and Fossil History of the Hamamelidae: 1. Introduction and ‘Lower’ Hamamelidae, Ed. by P. R. Crane and S. Blackmore (Clarendon Press, Oxford 1989), pp. 249–272.Google Scholar
  67. 67.
    F. F. Flint, “Development of the Megagametophyte in Liquidambar styraciflua L.,” Madrono 15, 25–29 (1959).Google Scholar
  68. 68.
    W. M. Fontaine, “The Potomac or Younger Mesozoic Flora,” US Geol. Surv. Monogr. 15, 1–375 (1889).Google Scholar
  69. 69.
    E. Forbes, “Note on the Fossil Leaves Represented in Plates II, III, and IV,” Geol. Soc. London. Quart. J. 7, 1–103 (1851).Google Scholar
  70. 70.
    L. I. Fot’yanova, M. Ya. Serova, F. D. Levin, and N. P. Maslova, “Paleogene of the Utkholokskii Peninsula (Western Kamchatka),” Stratigr. Geol. Korrelyatsia 4(6), 32–46 (1996).Google Scholar
  71. 71.
    E. M. Friis, “Angiosperm Fruits and Seeds from the Middle Miocene of Jutland (Denmark),” Kong. Danske Vidensk. Selskab Biol. Skrifter. 24, 1–165 (1985).Google Scholar
  72. 72.
    E. M. Friis, P. R. Crane, and K. R. Pedersen, “Reproductive Structures of Cretaceous Platanaceae,” Kong. Danske Vidensk. Selskab Biol. Skrifter. 31, 1–55 (1988).Google Scholar
  73. 73.
    E. M. Friis and K. R. Pedersen, “Angiosperm Pollen in situ in Cretaceous Reproductive Organs,” Am. Assoc. Stratigr. Palynol. Found. 1 (Palynology: Principles and Applications, Ed. by J. Jansonius and D. C. McGregor), 409–426 (1996).Google Scholar
  74. 74.
    E. Fryns-Claessens and W. Van Cotthem, “A New Classification of the Ontogenetic Types of Stomata,” Bot. Rev. 39, 71–138 (1973).Google Scholar
  75. 75.
    Y. Gamalei, “Structure and Function of Leaf Minor Veins in Trees and Herbs,” Trees 3, 96–110 (1989).Google Scholar
  76. 76.
    A. Goldberg, “Classification, Evolution and Phylogeny of the Families of Dicotyledons,” Smithsonian Contrib. Bot., No. 58, 1–314 (1986).Google Scholar
  77. 77.
    P. Goldblatt and P. K. Endress, “Cytology and Evolution in Hamamelidaceae,” J. Arnold Arbor. 58(1), 67–71 (1977).Google Scholar
  78. 78.
    L. B. Golovneva, “The New Genus Platimelis in Late Cretaceous-Early Paleogene Floras of the Arctic Region,” Botan. Zh. 79(1), 98–107 (1994a).Google Scholar
  79. 79.
    L. B. Golovneva, “Maastrichtian-Danian Floras of the Koryak Plateau,” Tr. Botan. Inst. Ross. Akad. Nauk, No. 13 (1994b).Google Scholar
  80. 80.
    L. B. Golovneva, “Evolution of the Cretaceous Platanoid Plants of Siberia Based on Leaf Morphology and Cuticular Patterns,” in Abstracts of the 16th International Symposium on Biodiversity and Evolutionary Biology (Frankfurt am Main, 2003), p. 36.Google Scholar
  81. 81.
    L. B. Golovneva, “Late Cretaceous Flora of Siberia,” Doctoral Dissertation in Biology (St. Petersburg, 2004).Google Scholar
  82. 82.
    L. B. Golovneva, “Cuticular Features of Fossil Platanaceae and Their Taxonomical Importance,” in XVII International Botanic Congress: Abstracts (Vienna, 2005), p. 185.Google Scholar
  83. 83.
    L. B. Golovneva, “Occurrence of Sapindopsis (Platanaceae) in the Cretaceous of Eurasia,” Paleontol. J. 41(11), 1077–1090 (2007).Google Scholar
  84. 84.
    L. B. Golovneva, “A New Platanoid Genus, Tasymia (Angiosperm Plants) from the Turonian of Siberia,” Paleontol. Zh., No. 2, 86–95 (2008) [Paleontol. J. 42 (2), 192–202 (2008)].Google Scholar
  85. 85.
    V. Goremykin, S. Hansmann, and W. Martin, “Evolutionary Analysis of 58 Proteins Encoded in Six Completely Sequenced Chloroplast Genomes: Revised Molecular Estimates of Two Seed Plant Divergence Times,” Pl. Syst. Evol. 206, 377–351 (1997).Google Scholar
  86. 86.
    V. V. Goremykin, K. I. Hirsch-Ernst, S. Wollf, and F. N. Hellwig, “The Chloroplast Genome of the Basal Angiosperm Calycanthus fertilis: Structural and Phylogenetic Analysis,” Plant Syst. Evol. 242, 119–135 (2003).Google Scholar
  87. 87.
    T. K. Goryshina, Ecology of Plants (Vysshaya Shkola, Moscow, 1979) [in Russian].Google Scholar
  88. 88.
    V. G. Grant, Plant Speciation, 2nd ed. (Columbia Univ. Press, New York, 1981).Google Scholar
  89. 89.
    H. Hallier, “über den Umfang, die Gliederung und die Verwanolt Schaft der Familie der Hamamelidaceen,” Beih. Bot. Jbl. 14, 247–260 (1903).Google Scholar
  90. 90.
    H. Hallier, “L’origine et le systeme phyletique des Angiospermes exposes (l’aide, de leur arore genealogique,” Archs. Neerl. Sci. 1, 146–234 (1912).Google Scholar
  91. 91.
    H. Harms, “Hamamelidaceae,” in Die Naturlichen Pflanzenfamilien, Ed. by A. Engler and K. Prantl (Engelmann, Leipzig, 1930), pp. 303–345.Google Scholar
  92. 92.
    A. Henry and M. G. Flood, “The History of the London Plane,” Proc. Roy. Arish. Acad. Sec. B. 35(2), 9–18 (1919).Google Scholar
  93. 93.
    A. B. Herman, “New Angiosperms from the Coniacian of the Northwestern Kamchatka Peninsula,” Paleontol. Zh., No. 2, 89–100 (1989).Google Scholar
  94. 94.
    A. B. Herman, “Diversity of Cretaceous Platanaceae of Anadyr-Koryak Subregion in Connection with Climatic Changes,” Stratigr. Geol. Korrelyatsia 2(4), 62–77 (1994).Google Scholar
  95. 95.
    E. J. Hermsen, K. C. Nixon, and W. L. Crepet, “The Impact of Extinct Taxa on Understanding the Early Evolution of Angiosperm Clades: An Example Incorporating Fossil Reproductive Structures of Saxifragales,” Pl. Syst. Evol. 260, 141–169 (2006).Google Scholar
  96. 96.
    L. J. Hickey, “Classification of the Architecture of Dicotyledonous Leaves,” Am. J. Bot. 60(1), 17–34 (1973).Google Scholar
  97. 97.
    L. J. Hickey and J. A. Doyle, “Early Cretaceous Fossil Evidence for Angiosperm Evolution,” Bot. Rev. 43, 3–104 (1977).Google Scholar
  98. 98.
    L. J. Hickey and J. A. Wolfe, “The Basis of Angiosperms Phylogeny: Vegetative Morphology,” Ann. Missouri Bot. Gard. 62, 538–589 (1975).Google Scholar
  99. 99.
    K. W. Hilu, T. Borsch, K. Muller, et al., “Angiosperm Phylogeny Based on matK Sequence Information,” Am. J. Bot. 90, 1758–1776 (2003).Google Scholar
  100. 100.
    M. T. Hoey and C. R. Parks, “Isozyme Divergence between Eastern Asian, North American, and Turkish Species of Liquidambar (Hamamelidaceae),” Am. J. Bot. 78, 938–947 (1991).Google Scholar
  101. 101.
    M. T. Hoey and C. R. Parks, “Genetic Divergence in Liquidambar styraciflua, L. formasana and L. acalycina (Hamamelidaceae),” Syst. Bot. 19, 308–316 (1994).Google Scholar
  102. 102.
    S. B. Hoot, S. Magallón-Puebla, and P. R. Crane, “Phylogeny of Basal Eudicots Based on Three Molecular Data Sets: atpB, rbcL, and 18S Nuclear Ribosomal DNA Sequences,” Ann. Missouri Bot. Gard. 86, 1–32 (1999).Google Scholar
  103. 103.
    H. H. Hu and R. W. Chaney, “A Miocene Flora from Shantung Province, China,” Carnegie Inst. Wash. Publ. P-147 (1940).Google Scholar
  104. 104.
    G. L. Huang, “Comparative Anatomical Studies on the Woods of the Hamamelidaceae in China,” Sunyatsenia 1, 24–26 (1986).Google Scholar
  105. 105.
    L. Hufford, “Rosidae and Their Relationships to Other Nonmagnoliid Dicotyledons: A Phylogenetic Analysis Using Morphological and Chemical Data,” Ann. Missouri Bot. Gard. 79, 218–248 (1992).Google Scholar
  106. 106.
    L. D. Hufford and P. R. Crane, “A Preliminary Phylogenetic Analysis of the ‘Lower’ Hamamelidae,” in Evolution, Systematics and Fossil History of the Hamamelidae: 1. Introduction and “Lower” Hamamelidae, Ed. by P. R. Crane and S. Blackmore (Oxford Univ. Press, New York, 1989), pp. 175–192.Google Scholar
  107. 107.
    L. D. Hufford and P. K. Endress, “The Diversity of Anther Structures and Dehiscence Patterns among Hamamelididae,” Bot. J. Linn. Soc. 99(4), 301–346 (1989).Google Scholar
  108. 108.
    J. Hutchinson, “Hamamelidaceae,” in The Genera of Flowering Plants, Angiospermae, Dicotyledons, (Clarendon Press, Oxford, 1967), Vol. 2, pp. 93–103.Google Scholar
  109. 109.
    J. Hutchinson, Evolution and Phylogeny of Flowering Plants (Academic, London-New York, 1969).Google Scholar
  110. 110.
    K. Huzioka and E. Takahasi, “The Eocene Flora of the Ube Coal-Field, Southwest Honshu, Japan,” J. Mining Coll. Akita Univ., Ser. A 4(5), 64–78 (1970).Google Scholar
  111. 111.
    S. M. Ickert-Bond, K. B. Pigg, and J. Wen, “Comparative Infructescence Morphology in Liquidambar (Altingiaceae) and Its Evolutionary Significance,” Am. J. Bot. 92(8), 1234–1255 (2005).Google Scholar
  112. 112.
    S. M. Ickert-Bond, K. B. Pigg, and J. Wen, “Comparative Infructescence Morphology in Altingia (Altingiaceae) and Discordance between Morphological and Molecular Phylogenies,” Am. J. Bot. 94, 1094–1115 (2007).Google Scholar
  113. 113.
    S. M. Ickert-Bond and J. Wen, “Phylogeny and Biogeography of Altingiaceae: Evidence from Combined Analysis of Five Non-coding Chloroplast Regions,” Mol. Phylogenet. Evol. 39, 512–528 (2006).Google Scholar
  114. 114.
    A. Igersheim and P. K. Endress, “Gynoecium Diversity and Systematics of the Paleoherbs,” Bot. J. Linn. Soc. 127, 289–370 (1998).Google Scholar
  115. 115.
    S. Ishida, “The Noroshi Flora of Noto Peninsula, Central Japan,” Mem. Fac. Sci. Kyoto Univ. Ser. Geol. Mineral. 37(1), 1–112 (1970).Google Scholar
  116. 116.
    M. Jay, “Distribution des flavonoides chez les Hamamelidacees et familles affines,” Taxon 17, 136–147 (1968).Google Scholar
  117. 117.
    K. R. Johnson, “Description of Seven Common Fossil Leaf Species from the Hell Creek Formation (Upper Cretaceous: Upper Maastrichtian), North Dakota, South Dakota, and Montana,” Proc. Denver Mus. Nat. Hist., Ser. 3, No. 12, 1–47 (1996).Google Scholar
  118. 118.
    W. S. Judd and R. G. Olmstead, “A Survey of Tricolpate (Eudicot) Phylogenetic Relationships,” Am. J. Bot. 91, 1627–1644 (2004).Google Scholar
  119. 119.
    R. N. Kapil and U. Kaul, “Embryologically Little Known Taxon—Parrotiopsis jacquemontiana,” Phytomorphology 22, 234–245 (1972).Google Scholar
  120. 120.
    U. Kaul and R. N. Kapil, “Exbucklandia populnea—from Flower to Fruit,” Phytomorphology 24, 217–228 (1974).Google Scholar
  121. 121.
    E. A. Kellog and N. D. Juliano, “The Structure and Function of RuBisCo and Their Implications for Systematic Studies,” Am. J. Bot. 84(3), 413–428 (1997).Google Scholar
  122. 122.
    F. Kirchheimer, “Ueber Steinhauera subglobosa Presl. und die Reste von Liquidambar-Fruchstanden aus Tertiar Mitteleuropas,” Neues Jahrb. Mineral. Abt. B, 216–225 (1943).Google Scholar
  123. 123.
    F. Kirchheimer, Die Laubgewachse der Braunkohlenzeit (Wilhelm Knapp Verlag, Halle, 1957).Google Scholar
  124. 124.
    E. Knobloch, M. Konzalova, and Z. Kvaček, “Die obereozane Flora der Stare Seldo-Schichtenfolge in Bohmen (Mitteleuropa),” in Cesky geologicky ustav (Praha, 1996).Google Scholar
  125. 125.
    E. Knobloch and Z. Kvaček, “Miozane Blatterfloren vom Westrand der Bohmisichen Masse,” Rozpt. Usredn. Ustavu Geolog. 42, 1–131 (1976).Google Scholar
  126. 126.
    E. Knobloch and D. H. Mai, “Monographie der Fruchte und Samen in der Kreide von Mitteleuropa,” Vydal Ustr. Ustav Geol. Acad. Praha 47, 1–219 (1986).Google Scholar
  127. 127.
    T. M. Kodrul and N. P. Maslova, “A New Species of the Genus Platimeliphyllum N. Maslova from the Paleocene of the Amur Region, Russia,” Paleontol. J. 41(11), 1108–1117 (2007).Google Scholar
  128. 128.
    N. A. Kolchanov and V. V. Suslov, “Coding and Evolution of Complexity in the Biological Organization,” in Evolution of the Biosphere and Diversity: In Commemoration of A.Yu. Rozanov’s 70th Birthday (KMK Sci. Press Ltd., Moscow, 2006), pp. 60–96 [in Russian].Google Scholar
  129. 129.
    V. A. Krassilov, “Upper Cretaceous Staminate Heads with Pollen Grains,” Palaeontology 16, 41–44 (1973a).Google Scholar
  130. 130.
    V. A. Krassilov, “Cuticular Structure of Cretaceous Angiosperms from the Far East of the USSR,” Palaeontogr. B 142, 105–116 (1973b).Google Scholar
  131. 131.
    V. A. Krassilov, “Modern Problems of Relationship of Phylogeny and Systematics,” in Achievements in Sciences and Engineering: Vertebrate Zoology, Vol. 7: Problems of the Evolutionary Theory (VINITI, Moscow, 1975), pp. 118–147 [in Russian].Google Scholar
  132. 132.
    V. A. Krassilov, The Tsagayan Flora of the Amur Region (Nauka, Moscow, 1976) [in Russian].Google Scholar
  133. 133.
    V. A. Krassilov, Cretaceous Flora of Sakhalin (Nauka, Moscow, 1979) [in Russian].Google Scholar
  134. 134.
    V. A. Krassilov, The Origin and Early Evolution of Flowering Plants (Nauka, Moscow, 1989) [in Russian].Google Scholar
  135. 135.
    V. A. Krassilov, Angiosperm Origins: Morphological and Ecological Aspects (Pensoft, Sofia, 1997).Google Scholar
  136. 136.
    V. A. Krassilov and F. Bacchia, “Cenomanian florule of Nammoura, Lebanon,” Cretaceous Res. 21, 785–799 (2000).Google Scholar
  137. 137.
    V. A. Krassilov and Yu. Loven, “Cercidiphyllum and the Problem of Initial Angiosperms,” in Materials of Conference on Morphology and Systematics of Plants, Devoted to 300th Anniversary of the Birthday of C. Linnaeus (Mosk. Gos. Univ., Moscow, 2007), pp. 39–41 [in Russian].Google Scholar
  138. 138.
    V. A. Krassilov, N. M. Makulbekov, and N. P. Maslova, “Ushia, a Palaeocene Angiosperm of Nothofagus Affinities from the Lower Volga and Western Kazakhstan,” Palaeontographica 239B(4–6), 137–145 (1996).Google Scholar
  139. 139.
    V. A. Krassilov and P. V. Shilin, “New Platanoid Staminate Heads from the Mid-Cretaceous of Kazakhstan,” Rev. Palaeobot. Palynol. 85, 207–211 (1995).Google Scholar
  140. 140.
    A. N. Kryshtofovich and T. N. Baikovskaya, The Cretaceous Flora of Sakhalin (Akad. Nauk SSSR, Moscow-Leningrad, 1960) [in Russian].Google Scholar
  141. 141.
    A. N. Kryshtofovich and T. N. Baikovskaya, “The Upper Cretaceous Flora of Tsagayan in the Amur Region,” in Selected Works of A.N. Kryshtofovich (Nauka, Moscow-Leningrad, 1966), Vol. 3, pp. 184–320 [in Russian].Google Scholar
  142. 142.
    Z. Kvaček, “A New Platanus from the Bohemian Tertiary,” Paläontol. Abh. Abt. B 3, 435–439 (1970).Google Scholar
  143. 143.
    Z. Kvaček and S. R. Manchester, “Vegetative and Reproductive Structures of the Extinct Platanus neptuni from the Tertiary of Europe and Relationships within the Platanaceae,” Plant Syst. Evol. 244, 1–29 (2004).Google Scholar
  144. 144.
    Z. Kvaček, S. R. Manchester, and S.-X. Guo, “Trifoliolate Leaves of Platanus bella (Heer) comb. n. from the Paleocene of North America, Greenland, and Asia and Their Relationships among Extinct and Extant Platanaceae,” Int. J. Plant Sci. 162(2), 441–458 (2001).Google Scholar
  145. 145.
    J. Kvaček and Z. Váchová, “Revision of Platanoid Foliage from the Cretaceous of the Czech Republic,” J. Nat. Mus. Natur. Hist. Ser. 175(3–4), 77–89 (2006).Google Scholar
  146. 146.
    I. V. Lebedev, “Upper Cretaceouses Plants,” in Biostratigraphy of the Mesozoic and Tertiary Deposits of Western Siberia (Gostoptekhizdat, Leningrad, 1962), pp. 237–282 [in Russian].Google Scholar
  147. 147.
    J. F. Leroy, “Origine et evolution du genre Platanus (Platanaceae),” CR Hebd. Seanc. Acad. Sci. 295, 251–254 (1982).Google Scholar
  148. 148.
    L. Lesquereux, “Contributions to the Fossil Flora of the Western Territories: Part 1. The Cretaceous Flora,” Rep. US Geol. Surv. 6, 1–136 (1874).Google Scholar
  149. 149.
    L. Lesquereux, “Flora of the Dakota Group,” US Geol. Surv. Mon. 17, 1–256 (1892).Google Scholar
  150. 150.
    J. Li, A. L. Bogle, and A. S. Klein, “Phylogenetic Relationships in the Hamamelidaceae: Evidence from the Nucleotide Sequences of the Plastid Gene matK,” Plant Syst. Evol. 218, 205–219 (1999).Google Scholar
  151. 151.
    Life of Plants (Prosveshchenie, Moscow, 1980), Vol. 5, Part 1 [in Russian].Google Scholar
  152. 152.
    J. Lindley, A Natural System of Botany (Longman, London, 1836).Google Scholar
  153. 153.
    J. Lindley, The Vegetable Kingdom, 3rd ed. (Bradbury and Evans, London, 1853).Google Scholar
  154. 154.
    C. Linnaeus, Genera plantarum: eorumque characteres naturales secundum numerum, figuram, situm, et proportionem omnium fructificationis partium (Impensis Laurentii Salvii, Stockholm, 1754).Google Scholar
  155. 155.
    L. I. Lotova, Morphology and Anatomy of Higher Plants (Editorial URSS, Moscow, 2000) [in Russian].Google Scholar
  156. 156.
    H. D. MacGinitie, “The Flora of the Weaverille Beds of Trinity County, California,” Carnegie Inst. Washington Publ. 465, 83–151 (1937).Google Scholar
  157. 157.
    H. D. MacGinitie, “A Middle Eocene Flora from the Central Sierra Nevada,” Carnegie Inst. Washington Publ. 534, 1–178 (1941).Google Scholar
  158. 158.
    S. Magallón-Puebla, “Extinct and Extant Hamamelidoideae: Phylogeny and Character Evolution,” Am. J. Bot. 87(Suppl.), 141 (2000).Google Scholar
  159. 159.
    S. Magallón-Puebla, P. R. Crane, and P. S. Herendeen, “Phylogenetic Pattern, Diversity and Diversification of Eudicots,” Ann. Missouri Bot. Gard. 86, 297–372 (1999).Google Scholar
  160. 160.
    S. Magallón-Puebla, P. S. Herendeen, and P. R. Crane, “Quadriplatanus georgianus gen. et sp. nov.: Staminate and Pistillate Platanaceous Flowers from the Late Cretaceous (Coniacian-Santonian) of Georgia, USA,” Int. J. Plant Sci. 158(3), 373–394 (1997).Google Scholar
  161. 161.
    S. Magallón-Puebla, P. S. Herendeen, and P. R. Crane, “Androdecidua endressii gen. et sp. nov., from the Late Cretaceous of Georgia (United States): Further Floral Diversity in Hamamelidoideae (Hamamelidaceae),” Int. J. Plant Sci. 162(4), 963–983 (2001).Google Scholar
  162. 162.
    S. Magallón-Puebla, P. S. Herendeen, and P. K. Endress, “Allonia decandra: Floral Remains of the Tribe Hamamelideae (Hamamelidaceae) from Campanian Strata of Southeastern USA,” Pl. Syst. Evol. 202, 177–198 (1996).Google Scholar
  163. 163.
    S. Magallón and M. J. Sanderson, “Absolute Diversification Rates in Angiosperm Clades,” Evolution 55, 1762–1780 (2001).Google Scholar
  164. 164.
    S. Magallón and M. J. Sanderson, “Angiosperm Divergence Times: The Effect of Genes, Codon Positions, and Time Constraints,” Evolution 59, 1653–1670 (2005).Google Scholar
  165. 165.
    D. H. Mai, “Zwei ausgestorbene Gattungen im Tertiar Europas und ihre florengeschichtliche Bedeutung,” Palaeontographica. Abt. B 123, 184–199 (1968).Google Scholar
  166. 166.
    D. H. Mai and H. Walter, “Die Floren der Hazelbacher Serie im Weisselster-Becken (Bezirk Leipzig, DDR),” Abh. Staatlichen Mus. Mineral. Geol. Drezden 28, 1–200 (1978).Google Scholar
  167. 167.
    Z. I. Makarova, “On the History of the Genus Liquidambar L.,” Botan. Zh. 42(8), 1182–1195 (1957).Google Scholar
  168. 168.
    S. A. Mamaev, “On the Problems and Methods of Intraspecific Systematics of Trees: 2. Variation Range,” Tr. Inst. Ekol. Rast. Zhiv. 64 (The Patterns of the Formation and Differentiation of Tree Species), 3–38 (1969).Google Scholar
  169. 169.
    S. R. Manchester, “Vegetation and Reproductive Morphology of an Extinct Plane Tree (Platanaceae) from the Eocene of Western North America,” Bot. Gaz. 147, 200–226 (1986).Google Scholar
  170. 170.
    S. R. Manchester, “Fruits and Seeds of the Middle Eocene Nut Beds Flora, Clarno Formation, Oregon,” Palaeontogr. Am., No. 58, 1–205 (1994).Google Scholar
  171. 171.
    S. R. Manchester, “Biogeographical Relationships of North American Tertiary Floras,” Ann. Mo. Bot. Gard. 86, 472–522 (1999).Google Scholar
  172. 172.
    N. P. Maslova, “Liquidambar L. from the Cenozoic of Eastern Asia,” Paleontol. J. 29(1A), 145–158 (1995a).Google Scholar
  173. 173.
    N. P. Maslova, “Genus Parrotiopsis (Niedz.) Schneid. (Hamamelidaceae R. Brown)—The First Record in the Tertiary of Eastern Asia,” Paleontol. J. 29(2A), 159–166 (1995b).Google Scholar
  174. 174.
    N. P. Maslova, “The Genus Platanus L. (Platanaceae Dumortier) in the Paleocene of the Kamchatka Peninsula,” Paleontol. Zh., No. 2, 88–93 (1997) [Paleontol. J. 31 (2), 203–208 (1997)].Google Scholar
  175. 175.
    N. P. Maslova, “Ancient Platanoids and Hamamelids: A Case Of Morphological Convergence?,” in Abstracts of the 5th Paleobotanic Palynological Conference, June 26–30, 1998, Kracow, Poland (Kracow, 1998), p. 11.Google Scholar
  176. 176.
    N. P. Maslova, “Cretaceous-Paleogene Platanaceae and Hamamelidaceae of the Far East and Siberia: Morphology, Systematics, and Phylogeny,” Candidate’s Dissertation in Biology (Paleontol. Inst. Ross. Akad. Nauk, Moscow, 2001a).Google Scholar
  177. 177.
    N. P. Maslova, “Evolutionary Trends in the Family Platanaceae,” in Evolution, Genetics, Ecology and Biodiversity: International Conference: Abstracts (Vladivostok, 2001b), p. 91.Google Scholar
  178. 178.
    N. P. Maslova, “A New Early Paleogene Plant of the Family Platanaceae (Based on Leaves and Inflorescences),” Paleontol. Zh., No. 2, 89–101 (2002a) [Paleontol. J. 36 (2), 201–213 (2002a)].Google Scholar
  179. 179.
    N. P. Maslova, “Cretaceous Plane Trees: Truth or Mistake?,” in In Commemoration of the Corresponding Member of the Academy of Sciences of the USSR V.A. Vakhrameev (90th Anniversary of the Birthday) (GEOS, Moscow, 2002b), pp. 177–179 [in Russian].Google Scholar
  180. 180.
    N. P. Maslova, “Extinct and Extant Platanaceae and Hamamelidaceae: Morphology, Systematics, and Phylogeny,” Paleontol. J. 37(Suppl. 5), 467–589 (2003).Google Scholar
  181. 181.
    N. P. Maslova, “Approaches to the Development of Phylogenetic Schemes, Using an Example of the Families Platanaceae and Hamamelidaceae (Hamamelidales),” in Fundamental Problems of Botany and Botanical Education: Traditions and Prospects: To 250th Anniversary of the Foundation of Lomonosov Moscow State University (KMK, Moscow, 2004), pp. 67–68 [in Russian].Google Scholar
  182. 182.
    N. P. Maslova, “Isomorphic Polymorphism in the Platanaceae and Altingioideae and the Problem of Their Relationships,” Paleontol. J. 41(11), 1118–1137 (2007a).Google Scholar
  183. 183.
    N. P. Maslova, “Phylogenetic Relationships of the Families Platanaceae and Hamamelidaceae: Paleobotanic Evidence,” in Materials of Conference on Morphology and Systematics of Plants, Devoted to 300th Anniversary of the Birthday of C. Linnaeus (Mosk. Gos. Univ., Moscow, 2007b), pp. 72–73 [in Russian].Google Scholar
  184. 184.
    N. P. Maslova, “Reconstruction of Extinct Platanoids Based on Leaves and Reproductive Organs: Problems of Systematics of Records,” in All-Russia Conference on Fundamental and Applied Botanic Research at the Beginning of the 21st Century, Petrozavodsk, September 22–27, 2008), Part 3 (Karelian Scientific Center of the Russian Academy of Sciences, Petrozavodsk, 2008a), pp. 209–211 [in Russian].Google Scholar
  185. 185.
    N. P. Maslova, “Morphology, Systematics, and Phylogeny of Extinct Platanoids and Hamamelids,” Doctoral Dissertation in Biology (Paleontol. Inst. Ross. Akad. Nauk, Moscow, 2008b).Google Scholar
  186. 186.
    N. P. Maslova, “Association of Reproductive Organs of Platanoids (Angiospermae): Significance for Systematics and Phylogeny,” Paleontol. J. 42(12), 1393–1404 (2008c).Google Scholar
  187. 187.
    N. P. Maslova, “New Genus Sarbaicarpa gen. nov. (Hamamelidales) from the Cenomanian-Turonian of Western Kazakhstan,” Paleontol. J. 43(10), 1281–1297 (2009).Google Scholar
  188. 188.
    N. P. Maslova and L. B. Golovneva, “Lindacarpa gen. et sp. nov., a New Infructescence of the Hamamelidaceae from the Upper Cretaceous of Eastern Siberia,” Paleontol. Zh., No. 4, 100–106 (2000a) [Paleontol. J. 34 (4), 462–468 (2000a)].Google Scholar
  189. 189.
    N. P. Maslova and L. B. Golovneva, “A Hamamelid Inflorescence with in situ Pollen Grains from the Cenomanian of Eastern Siberia,” Paleontol. J. 34(Suppl. 1), 40–49 (2000b).Google Scholar
  190. 190.
    N. P. Maslova, L. B. Golovneva, and M. V. Tekleva, “Infructescences of Kasicarpa gen. nov. (Hamamelidales) from the Late Cretaceous (Turonian) of the Chulym-Yenisei Depression, Western Siberia, Russia,” Acta Paleobot. 45(2), 121–137 (2005).Google Scholar
  191. 191.
    N. P. Maslova and N. V. Gordenko, “Variation in Morphological and Epidermal Characters of Leaves of Extant Platanus acerifolia Willd. (Platanaceae) and Approaches to the Determination of Cretaceous Platanus-like Leaves,” in Fourth Conference in Memory of A.N. Kryshtofovich, St. Petersburg, October 30–31, 2007 (St. Petersburg, 2008a), p. 23 [in Russian].Google Scholar
  192. 192.
    N. P. Maslova, N. V. Gordenko, and L. D. Volkova, “Structural Epidermal Features of Leaves of Platanus acerifolia Willd. (Platanaceae) and Significance of Cuticular Analysis for the Determination of Cretaceous Platanus-like Leaves,” Botan. Zh. 93(7), 982–995 (2008b).Google Scholar
  193. 193.
    N. P. Maslova and A. B. Herman, “New Finds of Fossil Hamamelids and Data on the Phylogenetic Relationships between the Platanaceae and Hamamelidaceae,” Paleontol. Zh., No. 5, 94–105 (2004) [Paleontol. J. 38 (5), 563–575 (2004)]Google Scholar
  194. 194.
    N. P. Maslova and A. B. Herman, “Infructescences of Friisicarpus nom. nov. (Platanaceae) and Associated Foliage of the Platanoid Type from the Cenomanian of Western Siberia,” Paleontol. Zh., No. 1, 103–106 (2006) [Paleontol. J. 40 (1), 109–113 (2006)]Google Scholar
  195. 195.
    N. P. Maslova and T. M. Kodrul, “New Platanaceae Infructescence Archaranthus gen. nov. from the Maastrichtian-Paleocene of the Amur Region,” Paleontol. Zh., No. 1, 92–100 (2003) [Paleontol. J. 37 (1), 89–98 (2003)].Google Scholar
  196. 196.
    N. P. Maslova and T. M. Kodrul, “Association of Leaves and Reproductive Structures of Platanoid Appearance in the Paleocene of the Amur Region, Russia,” in Fourth Conference in Memory of A.N. Kryshtofovich, St. Petersburg, October 30–31, 2007 (St. Petersburg, 2008), pp. 23–24 [in Russian].Google Scholar
  197. 197.
    N. P. Maslova, T. M. Kodrul, and M. V. Tekleva, “A New Staminate Inflorescence of Bogutchanthus gen. nov. (Hamamelidales) from the Paleocene Beds of the Amur Region, Russia,” Paleontol. Zh., No. 5, 89–103 (2007) [Paleontol. J. 41 (5), 89–103 (2007)].Google Scholar
  198. 198.
    N. P. Maslova and V. A. Krassilov, “New Hamamelid Infructescences from the Palaeocene of Western Kamchatka, Russia,” Rev. Palaeobot. Palynol. 97, 67–78 (1997).Google Scholar
  199. 199.
    N. P. Maslova and V. A. Krassilov, “A New Genus of Platanaceae from the Paleocene of the Amur Region,” Paleontol. Zh., No. 1, 106–110 (2002) [Paleontol. J. 36 (1), 102–106 (2002)].Google Scholar
  200. 200.
    N. P. Maslova, M. G. Moiseeva, A. B. Herman, and J. Kvaček, “Did Plane Trees Exist in the Cretaceous?,” Paleontol. Zh., No. 4, 98–110 (2005) [Paleontol. J. 39 (4), 440–453 (2005)].Google Scholar
  201. 201.
    N. P. Maslova, L. D. Volkova, and N. V. Gordenko, “Morphological Variability of Leaves of Platanus acerifolia Willd. (Platanaceae) and Approaches to the Determination of Dispersed Cretaceous Platanus-like Leaves,” Botan. Zh. 93(6), 825–839 (2008a).Google Scholar
  202. 202.
    H. Matsuo, “Palaeogene Flora of North-Western Kyushu: Part I. The Takashima Flora,” Ann. Sci. Coll. Liberal Arts. Kanazawa Univ. Nay. Sci. 4, 15–88 (1967).Google Scholar
  203. 203.
    E. E. McIver and J. F. Basinger, “Flora of the Ravenscrag Formation (Paleocene), Southwestern Saskatchewan, Canada,” Palaeontogr. Can., No. 10, 1–167 (1993).Google Scholar
  204. 204.
    A. D. J. Meeuse, “Floral Evolution in the Hamamelideae: 3. Hamamelidales and Associated Groups Including Urticales, and Final Conclusions,” Acta Bot. Neerl. 24(2), 181–191 (1975).Google Scholar
  205. 205.
    R. D. Meikle, Flora of Cyprus (Betham-Moxum Trust, R. Botan. Gard., Kew, 1977), Vol. 1.Google Scholar
  206. 206.
    A. P. Melikyan, “The Anatomical Structure of Testa in Representatives of the Genera Liquidambar L. and Altingia Nor. in the Context of Their Systematics,” Biol. Zh. Armen. 24(10), 17–24 (1971).Google Scholar
  207. 207.
    A. P. Melikyan, “On the Position of the Genera Rhodoleia, Exbucklandia, and Chunia in the System of the Family Hamamelidaceae,” Biol. Zh. Armen. 25(5), 39–45 (1972).Google Scholar
  208. 208.
    A. P. Melikyan, “Types of the Seed Coat in the Hamamelidaceae and Closely Related Families in Connection with Their Taxonomic Relationships,” Botan. Zh. 58(3), 350–359 (1973a).Google Scholar
  209. 209.
    A. P. Melikyan, “Anatomy of the Seed Coat and Systematics of the Family Hamamelidaceae,” Biol. Zh. Armen. 26(3), 104–105 (1973b).Google Scholar
  210. 210.
    C. R. Metcalfe and L. Chalk, Anatomy of the Dicotyledons (Oxford, 1950), Vol. 1.Google Scholar
  211. 211.
    C. R. Metcalfe and L. Chalk, Anatomy of the Dicotyledons, Vol. 1: Systematic Anatomy of Leaf and Stem, with a Brief History of the Subject 2nd ed. (Oxford, 1979).Google Scholar
  212. 212.
    S. V. Meyen, Fundamentals of Paleobotany (Nedra, Moscow, 1987) [in Russian].Google Scholar
  213. 213.
    R. A. Mindell, R. A. Stockey, and G. Beardt, “Anatomically Preserved Staminate Inflorescences of Gynoplatananthus oysterbayensis gen. et sp. nov. (Platanaceae) and Associated Pistillate Fructifications from the Eocene of Vancouver Island, British Columbia,” Int. J. Plant Sci. 167(3), 591–600 (2006).Google Scholar
  214. 214.
    M. Mizushima, “On the Flower of Disanthus cercidifolius Maxim.,” J. Jap. Bot. 43, 522–524 (1968).Google Scholar
  215. 215.
    M. G. Moiseeva, “Morphological Variability of Leaves of “Platanus” raynoldsii Newberry from the Maastrichtian of the Koryak Highland,” Paleontol. Zh., No. 3, 98–107 (2003) [Paleontol. J. 37 (3), 319–330 (2003)].Google Scholar
  216. 216.
    M. G. Moiseeva, “Stratigraphical Significance of the Maastrichtian Flora of the Amaam Lagoon and Floral Changes at the Cretaceous-Paleogene Boundary in the Border of the Northern Pacific,” Candidate’s Dissertation in Geology and Mineralogy (Geol. Inst. Ross. Akad. Nauk, Moscow, 2007).Google Scholar
  217. 217.
    M. G. Moiseeva, “New Angiosperms from the Maastrichtian of the Amaam Lagoon Area (Northeastern Russia),” Paleontol. Zh., No. 3, 92–105 (2008) [Paleontol. J. 42 (3), 313–327 (2008)].Google Scholar
  218. 218.
    M. G. Moiseeva, “New Data on the Cenomanian Flora of the Ugol’naya Bay Area (Northeastern Russia),” Paleontol. Zh., No. 2, 100–110 (2010) [Paleontol. J. 44 (2), 226–239 (2010)].Google Scholar
  219. 219.
    M. G. Moiseeva, T. M. Kodrul, and A. B. Herman, “Fossil Leaves of “Platanus” raynoldsii Newberry from Tsagayan Formation in Amur River Region,” in Proceedings of the 3rd Symposium on the Cretaceous Biota and the Cretaceous-Tertiary Boundary, Heilongjiang River Area, China (China, 2004), pp. 27–31.Google Scholar
  220. 220.
    B. Morley and J. Chao, “A Review of Corylopsis (Hamamelidaceae),” J. Arnold Arbor. 58, 382–414 (1977).Google Scholar
  221. 221.
    T. Nakai, Ordines, familiae, tribi, genera, sectiones, species, varietates et combinationes novae (Imperial Univ., Tokyo, 1943).Google Scholar
  222. 222.
    J. S. Newberry, “Notes of the Later Extinct Floras of the North America, with Descriptions of Some New Species of Fossil Plant from the Cretaceous and Tertiary Strata,” NY Lyceum Nat. Hist. Ann. 9, 1–76 (1868).Google Scholar
  223. 223.
    F. Niedeuzu, “Hamamelidaceae,” in Die Natürlichen Pflanzenfamilien, (A. Engler and K. Prautl 1891), Vol. 3, No. 2a, pp. 115–130.Google Scholar
  224. 224.
    K. C. Nixon and J. M. Poole, “Revision of the Mexican and Guatemalan Species of Platanus (Platanaceae),” Lundellia, No. 6, 103–137 (2003).Google Scholar
  225. 225.
    S. Oishi and K. Huzioka, “On the Tertiary Platanus from Hokkaido and Karahuto,” J. Taculty Sci. Hokkaido Univ. 7(1), 103–115 (1943).Google Scholar
  226. 226.
    L. Oken, Allgemeine Naturgeschichte für alle Stände Hoffman’sche (Verlagsbuchhandlung, Stuttgart, 1841).Google Scholar
  227. 227.
    T. Onoe, “A Middle Miocene Flora from Ogunimachi, Yamagata Prefecture, Japan,” Rept. Geol. Surv. Jap., No. 253, 1–64 (1974).Google Scholar
  228. 228.
    K. Ozaki, “Late Miocene and Pliocene Floras in Central Honshu, Japan,” Bull. Kanagawa Pref. Mus. Nat. Sci., No. Suppl., 1–244 (1991).Google Scholar
  229. 229.
    K. Y. Pan, A. M. Lu, and J. Wen, “Characters of Leaf Epidermis in Hamamelidaceae (s. l.),” Acta Phytotaxon. Sin. 28(1), 10–26 (1990).Google Scholar
  230. 230.
    K. R. Pedersen, E. M. Friis, P. R. Crane, and A. N. Drinnan, “Reproductive Structures of an Extinct Platanoid from the Early Cretaceous (Latest Albian) of Eastern North America,” Rev. Palaeobot. Palynol. 80, 291–303 (1994).Google Scholar
  231. 231.
    K. B. Pigg, S. M. Ickert-Bond, and Jun Wen, “Anatomically Preserved Liquidambar (Altingiaceae) from the Middle Miocene of Yakima Canyon, Washington State, USA, and Its Biogaographic Implications,” Am. J. Botany 91(3), 499–509 (2004).Google Scholar
  232. 232.
    K. B. Pigg and R. A. Stockey, “Platanaceous Plants from the Paleocene of Alberta, Canada,” Rev. Palaeobot. Palynol. 70(1/2), 125–146 (1991).Google Scholar
  233. 233.
    V. A. Poddubnaya-Arnoldi, Characteristics of the Angiosperm Families Based on Cytembryological Features (Nauka, Moscow, 1982) [in Russian].Google Scholar
  234. 234.
    A. G. Ponomarenko, “Paleontological Data on the Origin of Arthropods,” in Evolutionary Factors of the Formation of Faunal Diversity (KMK, Moscow, 2005), pp. 146–155 [in Russian].Google Scholar
  235. 235.
    A. G. Ponomarenko and A. P. Rasnitsyn, “On Phenetic and Phylogenetic Systems,” Zool. Zh. 50(1), 5–14 (1971).Google Scholar
  236. 236.
    Y.-L. Qiu, M. W. Chase, S. B. Hoot, et al., “Phylogenetics of the Hamamelidae and Their Allies: Parsimony Analyses of Nucleotide Sequences of the Plastid Gene rbcL,” Int. J. Plant Sci. 159(6), 891–905 (1998).Google Scholar
  237. 237.
    Y.-L. Qiu, O. Dombrovska, J. Lee, et al., “Phylogenetic Analyses of Basal Angiosperms Based on Nine Plastid, Mitochondrial, and Nuclear Genes,” Int. J. Plant Sci. 166, 815–842 (2005).Google Scholar
  238. 238.
    M. G. Radtke, K. B. Pigg, and W. C. Wehrm, “Fossil Corylopsis and Fothergilla Leaves (Hamamelidaceae) from the Lower Eocene Flora of Republic, Washington, USA, and Their Evolutionary and Biogeographic Significance,” Int. J. Plant Sci. 166, 347–356 (2005).Google Scholar
  239. 239.
    M. Rao, “Seed Anatomy in Some Hamamelidaceae and Phylogeny,” Phytomorphology 24(1–2), 113–139 (1974).Google Scholar
  240. 240.
    T. A. Rao and O. P. Bhupal, “Typology of Foliar Sclereids in Various Taxa of Hamamelidaceae,” Proc. Ind. Acad. Sci., Sect. B 79, 127–138 (1974).Google Scholar
  241. 241.
    A. P. Rasnitsyn, “Phylogeny and Systematics,” in Theoretical Problems of Modern Biology, Ed. by L. Yu. Zykova and E. N. Panov (Pushchino, 1983), pp. 41–49 [in Russian].Google Scholar
  242. 242.
    A. P. Rasnitsyn, “Evolutionary Rates and Evolutionary Theory (Hypothesis of Adaptive Compromise),” in Evolution and Biocenotic Crises, Ed. by L. P. Tatarinov and A. P. Rasnitsyn (Nauka, Moscow, 1987), pp. 46–64 [in Russian].Google Scholar
  243. 243.
    A. P. Rasnitsyn, “Phylogenetics,” in Modern Paleontology, Ed. by V. V. Menner and V. P. Makridin (Nedra, Moscow, 1988), Vol. 1, pp. 480–497 [in Russian].Google Scholar
  244. 244.
    A. P. Rasnitsyn, “Principles of Nomenclature and the Nature of the Taxon,” Zh. Obshch. Biol. 53(3), 307–313 (1992).Google Scholar
  245. 245.
    A. P. Rasnitsyn, “Conceptual Issues in Phylogeny, Taxonomy, and Nomenclature,” Contrib. Zool. 66(1), 3–41 (1996).Google Scholar
  246. 246.
    A. P. Rasnitsyn, “Process of Evolution and Methodology of the Systematics,” Tr. Russk. Entomol. Ob-va 73, 1–108 (2002).Google Scholar
  247. 247.
    A. P. Rasnitsyn, “Classical and Nonclassical Systematics: Other Viewpoint,” Zh. Obshch. Biol. 67(5), 385–388 (2006a).Google Scholar
  248. 248.
    A. P. Rasnitsyn, “Ontology of Evolution and Methodology of Taxonomy,” Paleontol. J. 40(Suppl. 6), 679–737 (2006b).Google Scholar
  249. 249.
    A. Reinsch, “Über die anatomischen Verhältnisse der Hamamelidaceae mit Rücksicht auf ihre systematische Gruppierungen,” Bot. Jahrb. Syst. 11, 347–395 (1890).Google Scholar
  250. 250.
    K. H. Reichinger, “Flora Aegaea: Flora der indeln und Halbinseln des Ägäischen Meeres,” Akad. Wissenschaften Wien. Mat.-Natur. Klasse Denkschrift 105, 1–924 (1943).Google Scholar
  251. 251.
    A. Rokas, B. L. Williams, N. King, and S. B. Carroll, “Genome Scale Approaches to Resolving Incongruence in Molecular Phylogenies,” Nature 425, 798–804 (2003).Google Scholar
  252. 252.
    A. Yu. Rozanov, Patterns of Morphological Evolution of Archaeocyatha and Questions of Stage Zonation of the Lower Cambrian (Nauka, Moscow, 1973) [in Russian].Google Scholar
  253. 253.
    S. V. Rozhnov, “Morphological Patterns of the Establishment and Evolution of Higher Taxa of Echinoderms,” in Evolutionary Factors of the Formation of Faunal Diversity (KMK, Moscow, 2005), pp. 156–170 [in Russian].Google Scholar
  254. 254.
    L. Rüffle, “Merkmalskomplexe bei alteren Angiospermen-Bluttern und die Kutikula von Credneria Zenker (Menispermaceae),” Palaeontographica. Abt. B 123(1–6), 123–145 (1968).Google Scholar
  255. 255.
    C. Rydin, M. Kallersjo, and E. M. Friis, “Seed Plant Relationships and the Systematic Position of Gnetales Based on Nuclear and Chloroplast DNA: Conflicting Data, Rooting Problems, and the Monophyly of Conifers,” Int. J. Plant. Sci. 163(2), 197–214 (2002).Google Scholar
  256. 256.
    F. S. Santamour, Jr., “Interspecific Hybridization in Liquidambar,” Forest Sci. 18, 23–26 (1972).Google Scholar
  257. 257.
    G. Saporta, “Prodrome d’une flora fossile des travertins anciens de Sezanne,” Soc. Geol. Fr., Ser. 3 8(3), 289–436 (1868).Google Scholar
  258. 258.
    V. Savolainen, C. M. Morton, S. B. Hoot, and M. W. Chase, “An Examination of Phylogenetic Patterns of Plastid atpB Gene Sequences among Eudicots,” Am. J. Bot. 83, 190 (1996).Google Scholar
  259. 259.
    D. Schmitt, “The Pistillate Inflorescence of Sweetgum (Liquidambar styraciflua L.),” Sylvae Genet. 15(2), 33–35 (1965).Google Scholar
  260. 260.
    D. N. Schoemaker, “On the Development of Hamamelis virginiana,” Bot. Gaz. 39, 248–266 (1905).Google Scholar
  261. 261.
    R. N. Schwarzwalder and D. L. Dilcher, “Systematic Placement of the Platanaceae in the Hamamelidae,” Ann. Missouri Bot. Gard. 78, 962–969 (1991).Google Scholar
  262. 262.
    I. G. Serebryakov, Morphology of Vegetative Organs of Higher Plants (Sovetsk. Nauka, Moscow, 1952) [in Russian].Google Scholar
  263. 263.
    G. K. Sharma and J. Tyree, “Geographic Leaf Cuticular and Gross Morphological Variations in Liquidambar styraciflua L. and Their Possible Relationship to Environmental Pollution,” Botan. Gaz. 134, 179–184 (1973).Google Scholar
  264. 264.
    A. P. Shennikov, Ecology of Plants (Sovetsk. Nauka, Moscow, 1950) [in Russian].Google Scholar
  265. 265.
    N. A. Shevyreva and A. B. Doweld, “On the Phylogenetic Position of the Genus Platanus L. (Platanaceae) Based on the Data on Carpology and Seed Anatomy,” in Systematics and Geography of Higher Plants (Nauka, St. Petersburg, 2000), pp. 1–47 [in Russian].Google Scholar
  266. 266.
    S. Shi, H. T. Chang, Y. Chen, L. Qu, and J. Wen, “Phylogeny of Hamamelidaceae Based on the ITS Sequences of Nuclear Ribosomal DNA,” Biochem. Syst. Ecol. 26, 55–69 (1998).Google Scholar
  267. 267.
    S. Shi, Y. Huang, Y. Zhong, et al., “Phylogeny of the Altingiaceae Based on cpDNA matK, PY-IGS and nrDNA ITS Sequences,” Plant Syst. Evol. 230, 13–24 (2001).Google Scholar
  268. 268.
    P. V. Shilin, Late Cretaceous Floras of Kazakhstan: Taxonomic Composition, History of Development, Stratigraphic Significance (Nauka, Alma-Ata, 1986) [in Russian].Google Scholar
  269. 269.
    P. V. Shilin, “Upper Cretaceous Flora of Karakumzholy, Northeastern Aral Region,” Paleontol. J. 42(12), 1405–1409 (2008).Google Scholar
  270. 270.
    M. A. Shishkin, “Individual Development and Evolutionary Theory,” in Evolution and Biocenotic Crises (Nauka, Moscow, 1987), pp. 76–124 [in Russian].Google Scholar
  271. 271.
    M. A. Shishkin, “Evolution As an Epigenetic Process,” in Modern Paleontology (Moscow, Nedra, 1988), Vol. 1, pp. 142–169 [in Russian].Google Scholar
  272. 272.
    O. D. Shkarlet, “On Variability of Plane Trees,” Byull. Nikit. Botan. Sad, No. 1, 33–36 (1979).Google Scholar
  273. 273.
    N. T. Skvortsova, “On Venation Types in Leaves of Representatives of the Family Hamamelidaceae,” Vopr. Farmakgn. 12(1), 75–83 (1960).Google Scholar
  274. 274.
    N. T. Skvortsova, “Comparative Morphological Study of Representatives of the Family Hamamelidaceae R. Br. and Their Phylogenetic Relationships,” in Questions of Comparative Morphology of Seed Plants (Leningrad, Nauka, 1975), pp. 7–24 [in Russian].Google Scholar
  275. 275.
    D. D. Sokolov, “Expert Estimation As a Basis for Phylogenetic Systematics,” in Material of Conference on Morphology and Systematics of Plants, Devoted to 300th Anniversary of the Birthday of C. Linnaeus (Mosk. Gos. Univ., Moscow, 2007), pp. 45–47 [in Russian].Google Scholar
  276. 276.
    D. E. Soltis, A. E. Senters, S. Kim, et al., “Gunnerales Are Sister to Other Core Eudicots: Implications for the Evolution to Pentamery,” Am. J. Bot. 90, 461–470 (2003).Google Scholar
  277. 277.
    D. E. Soltis and P. S. Soltis, “Phylogenetic Relationships in Saxifragaceae sensu lato: A Comparison of Topologies Based on 18S rDNA and rbcL Sequences,” Am. J. Bot. 84, 504–522 (1997).Google Scholar
  278. 278.
    D. E. Soltis, P. S. Soltis, M. W. Chase, et al., “Angiosperm Phylogeny Inferred from Multiple Genes As a Toot for Comparative Biology,” Nature 402, 402–404 (1999).Google Scholar
  279. 279.
    D. E. Soltis, P. S. Soltis, M. W. Chase, et al., “Angiosperm Phylogeny Inferred from 18S rDNA, rbcL, and atpB Sequences,” Bot. J. Linn. Soc. 133, 381–461 (2000).Google Scholar
  280. 280.
    D. E. Soltis, P. S. Soltis, P. K. Endress, and M. W. Chase, Phylogeny and Evolution of Angiosperms (Sinauer Ass., Sunderland Massachusetts, 2005).Google Scholar
  281. 281.
    D. E. Soltis, P. S. Soltis, D. L. Nickrent, et al., “Angiosperm Phylogeny Inferred from 18S Ribosomal DNA Sequences,” Ann. Missouri Bot. Gard. 84, 1–49 (1997).Google Scholar
  282. 282.
    K. R. Sporne, The Morphology of Angiosperms (Hutchinson, London, 1974).Google Scholar
  283. 283.
    K. Suzuki, “New Neogene Species of Platanus from Japan,” Sci. Rep. Fac. Art. Sci. Fukushima Univ. 7, 37–43 (1958).Google Scholar
  284. 284.
    A. L. Takhtajan, The System and Phylogeny of Flowering Plants (Nauka, Moscow-Leningrad, 1966) [in Russian].Google Scholar
  285. 285.
    A. L. Takhtajan, The Origin and Expansion of Flowering Plants (Nauka, Leningrad, 1970) [in Russian].Google Scholar
  286. 286.
    A. L. Takhtajan, The System of Magnoliophyta (Nauka, Leningrad, 1987) [in Russian].Google Scholar
  287. 287.
    A. L. Takhtajan, Diversity and Classification of Flowering Plants (Columbia Univ. Press, New York, 1997).Google Scholar
  288. 288.
    A. L. Takhtajan, Flowering Plants (Springer Verlag, Heidelberg, 2009).Google Scholar
  289. 289.
    T. Tanai and N. Suzuki, “Late Tertiary Floras from Northeastern Hokkaido, Japan,” Palaeontol. Soc. Jap. Spec. Pap., No. 10, 1–117 (1965).Google Scholar
  290. 290.
    L. P. Tatarinov, Morphological Evolution of Theriodonts and General Questions of Phylogenetics (Nauka, Moscow, 1976) [in Russian].Google Scholar
  291. 291.
    M. V. Tekleva, “Ultrastructure of the Sporoderm in the Systematics and Phylogeny of Fossil Gnetophytes and Platanoids,” Candidate’s Dissertation in Biology (Paleontol. Inst. Ross. Akad. Nauk, Moscow, 2007).Google Scholar
  292. 292.
    R. Thorne, “Synopsis of a Putatively Phylogenetic Classification of the Flowering Plants,” Aliso 6, 57–66 (1968).Google Scholar
  293. 293.
    R. F. Thorne, “The “Amentiferae” or Hamamelidae As an Artificial Group: A Summary Statement,” Brittonia 25, 395–405 (1973).Google Scholar
  294. 294.
    R. F. Thorne, “An Updated Phylogenetic Classification of the Flowering Plants,” Aliso 13, 365–389 (1992a).Google Scholar
  295. 295.
    R. F. Thorne, “Classification and Geography of Flowering Plants,” Bot. Rev. 58, 225–348 (1992b).Google Scholar
  296. 296.
    B. H. Tiffney, “Fruit and Seed Dispersal and the Evolution of the Hamamelidae,” Ann. Missouri Bot. Gard. 73(2), 394–416 (1986).Google Scholar
  297. 297.
    O. Tippo, “Comparative Anatomy of the Moraceae and Their Presumed Allies,” Bot. Gaz. 100, 1–99 (1938).Google Scholar
  298. 298.
    G. F. Tschan, T. Denk, and M. von Balthazar, “Credneria and Platanus (Platanaceae) from the Late Cretaceous (Santonian) of Quedlinburg, Germany,” Rev. Paleobot. Palynol. 152, 211–236 (2008).Google Scholar
  299. 299.
    K. Uemura, “Late Neogene Liquidambar (Hamamelidaceae) from the Southern Part of Northeast Honshu, Japan,” Mem. Nat. Sci. Mus. 16, 25–36 (1983).Google Scholar
  300. 300.
    G. R. Upchurch, “Cuticle Evolution in Early Cretaceous Angiosperms from the Potomac Group of Virginia and Maryland,” Ann. Mo. Bot. Gard. 71, 522–550 (1984).Google Scholar
  301. 301.
    G. R. Upchurch, P. R. Crane, and A. N. Drinnan, “The Megaflora from the Quantico Locality (Upper Albian), Lower Cretaceous Potomac Group of Virginia,” Virginia Mus. Natur. Hist. Mem. 4. P. 1–57 (1994).Google Scholar
  302. 302.
    V. A. Vakhrameev, “Late Cretaceous Platanaceae,” in Sketches of Geology and Paleontology of the Far East (Dal’nevost. Nauchn. Tsentr Akad. Nauk SSSR, Vladivostok, 1976), pp. 66–78 [in Russian].Google Scholar
  303. 303.
    J. Van Horne and D. L. Dilcher, “Foliar Morphology of Platanus,” Proc. Indiana Acad. Sci. 84, 69–70 (1975).Google Scholar
  304. 304.
    N. I. Vavilov, “The Law of Homologous Series in Hereditary Variation,” Selisk. Lesn. Khoz-vo, Nos. 1–3, 84–89 (1921).Google Scholar
  305. 305.
    M. von Balthazar and J. Schönenberger, “Floral Structure and Organization in Platanaceae,” Int. J. Plant Sci. 170(2), 210–255 (2009).Google Scholar
  306. 306.
    C. H. Waddington, “Canalization of Development and the Inheritance of Acquired Characters,” Nature 150(3811), 563–565 (1942).Google Scholar
  307. 307.
    H. Walter, “Das Tertiar-Vorkommen der Gattung Platanus L. im Tertiar des Weibelster-Beckens (Bezirk Leipzig, DDR),” Hall. Jb. Geowiss. 10, 9–19 (1985).Google Scholar
  308. 308.
    X. Wang, “Mesofossils with Platanaceous Affinity from the Dakota Formation (Cretaceous) in Kansas, USA,” Palaeoworld 17, 246–255 (2008).Google Scholar
  309. 309.
    X. Q. Wang and H. M. Li, “Discovery of Another Living Fossil—Shaniodendron subaequale (H.T. Chang) Deng et al. in China—Clearing up Paleobotanists a Long-Term Doubt,” Acta Palaeontol. Sin. 39(Suppl.), 308–317 (2000).Google Scholar
  310. 310.
    X. Z. Wang, “Palaeopalynological Evidence of Phylogeny in Hamamelidaceae,” Acta Phytotax. Sin. 30(2), 137–145 (1992).Google Scholar
  311. 311.
    L. F. Ward, “The Paleontological History of the Genus Platanus,” Proc. US Nat. Mus. 11, 39–49 (1888).Google Scholar
  312. 312.
    M. Wisniewski and A. L. Bogle, “The Ontogeny of the Inflorescence and Flower of Liquidambar styraciflua L. (Hamamelidaceae),” Am. J. Bot. 69(10), 1612–1624 (1982).Google Scholar
  313. 313.
    J. A. Wolfe, “Fossil Forms of Amentiferae,” Brittonia 25(4), 334–355 (1973).Google Scholar
  314. 314.
    J. A. Wolfe and W. Wehr, “Middle Eocene Dicotyledonous Plants from Republic, Northeastern Washington,” US Geol. Surv. Bull. 1597, 1–25 (1987).Google Scholar
  315. 315.
    J. Wu, B. Sun, Y. S. Liu, et al., “A New Species of Exbucklandia (Hamamelidaceae) from the Pliocene of China and Its Paleoclimatic Significance,” Rev. Paleobot. Palynol. 155(1–2), 32–41 (2009).Google Scholar
  316. 316.
    V. R. Zalensky, “Materials to Numerical Anatomy of Various Leaves in the Same Plants,” Izv. Kievsk. Politekhn. Inst. 4 (1904).Google Scholar
  317. 317.
    M. S. Zavada and D. L. Dilcher, “Comparative Pollen Morphology and Its Relationship to Phylogeny of Pollen in the Hamamelidae,” Ann. Missouri Bot. Gard. 73, 348–381 (1986).Google Scholar
  318. 318.
    Z. Y. Zhang and A. M. Lu, “Hamamelidaceae: Geographic Distribution, Fossil History and Origin,” Acta Phytotaxon. Sin. 33, 313–339 (1995).Google Scholar
  319. 319.
    Z. Y. Zhang and J. Wen, “The Seed Morphology in Hamamelidaceae and Its Systematic Evaluation,” Acta Phytotax. Sin. 34(5), 538–546 (1992).Google Scholar
  320. 320.
    L. C. Zhao and D. Y. Li, “Anatomically Preserved Seeds of Corylopsis (Hamamelidaceae) from the Miocene of Yunnan, China and Their Phytogeographic Implications,” Int. J. Plant Sci. 169(3), 483–494 (2008).Google Scholar
  321. 321.
    Z. K. Zhou, W. L. Crepet, and K. C. Nixon, “The Earliest Fossil Evidence of the Hamamelidaceae: Late Cretaceous (Turonian) Inflorescences and Fruits of Altingioideae,” Am. J. Bot. 88(5), 753–766 (2001).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  1. 1.Borissiak Paleontological InstituteRussian Academy of SciencesMoscowRussia

Personalised recommendations