Paleontological Journal

, Volume 43, Issue 1, pp 107–114 | Cite as

The most ancient terrestrial lichen Winfrenatia reticulata: A new find and new interpretation

  • I. V. Karatygin
  • N. S. Snigirevskaya
  • S. V. Vikulin


Silicified fossils from Rhynie cherts in Scotland are studied. A lichen belonging to the genus Winfrenatia is detected and studied. This oldest terrestrial lichen is dated to the Pragian (=Siegenian) of the Early Devonian. New characters of the lichen are described, and their new interpretation is given. The main component of the lichen thallus is a filamentous cyanobacterium (Nostocales). Structures which were interpreted as fungal hyphae are probably hollow sheaths of this cyanobacterium. Mycobiont hyphae develop at the base of the thallus and symbiose with a coccoid cyanobacterium. Thus, Winfrenatia reticulata is a three-parted organism, constituted of a mycobiont and filamentous and coccoid cyanobacteria.

Key words

lichens cyanobacteria Early Devonian symbiosis fossils coevolution 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V. Ahmadjian, “Definition of the Term Lichen,” Int. Lichenol. Newsl. 15(2), 18–19 (1982).Google Scholar
  2. 2.
    V. Ahmadjian, The Lichen Symbiosis (Wiley, New York, 1993).Google Scholar
  3. 3.
    L. I. Anderson and N. H. Trewin, “An Early Devonian Arthropod Fauna from the Windyfield Chert, Aberdeenshire, Scotland,” Palaeontology 46(3), 467–509 (2003).CrossRefGoogle Scholar
  4. 4.
    A. H. Church, “The Lichen As Transmigrant,” J. Bot. 59, 7–13; 40–46 (1921).Google Scholar
  5. 5.
    W. N. Croft and E. A. George, “Blue-Green Algae from the Middle Devonian of Rhynie, Aberdeenshire,” Bull. Brit. Museum (Natur. Hist.). Geol. 3(10), 341–353 (1958).Google Scholar
  6. 6.
    D. L. Dilcher, “Epiphyllous Fungi from Eocene Deposits in Western Tennessee, USA,” Palaeontogr. Abt. B, 116, 1–54 (1965).Google Scholar
  7. 7.
    D. S. Edwards and A. G. Lyon, “Algae from the Rhynie Chert,” Bot. J. Linn. Soc. 86, 37–55 (1983).CrossRefGoogle Scholar
  8. 8.
    O. E. Eriksson, “The Families of Bitunicate Ascomycetes,” Opera Botanica 60, 1–220 (1981).Google Scholar
  9. 9.
    S. Golubic and Lee Seong-Joo, “Early Cyanobacterial Fossil Record: Preservation, Palaeoenvironments, and Identification,” Eur. J. Phycol. 34 (4), 339–348 (1999).CrossRefGoogle Scholar
  10. 10.
    D. L. Hawksworth, “Co-Evolution and the Detection of Ancestry in Lichens,” J. Hattori Bot. Lab. 52, 323–329 (1982).Google Scholar
  11. 11.
    D. L. Hawksworth, “The Variety of Fungal-Algal Symbioses, Their Evolutionary Significance, and the Nature of Lichens,” Bot. J. Linn. Soc. 96, 3–20 (1988).CrossRefGoogle Scholar
  12. 12.
    A. H. Jahren, S. Porter, and J. J. Kuglitsch, “Lichen Metabolism Identified in Early Devonian Terrestrial Organisms,” Geology 31, 99–102 (2003).CrossRefGoogle Scholar
  13. 13.
    P. W. James and A. Henssen, “The Morphological and Taxonomic Significance of Cephalodia,” in Lichenology: Progress and Problems, Ed. by D. H. Brown, D. L. Hawksworth, and R. H. Bailey (Academic, London-New York, 1976), pp. 27–77.Google Scholar
  14. 14.
    A. H. Knoll, “The Early Evolution of Eukaryotes: A Geological Perspective,” Science 256(5057), 622–627 (1992).CrossRefGoogle Scholar
  15. 15.
    V. Ya. Kostyaev, Blue-Green Algae and Evolution of Eukaryotic Organisms (Nauka, Moscow, 2001) [in Russian].Google Scholar
  16. 16.
    M. Krings, H. Kerp, H. Hass, et al., “A Filamentous Cyanobacterium Showing Structured Colonial Growth from the Early Devonian Rhynie Chert,” Rev. Palaeobot. Palynol. 146(1–4), 265–276 (2007).CrossRefGoogle Scholar
  17. 17.
    F. Lutzoni, M. Pagel, and V. Reeb, “Major Fungal Lineages Are Derived from Lichen Symbiotic Ancestors,” Nature 411(6840), 937–940 (2001).CrossRefGoogle Scholar
  18. 18.
    K. Palmqvist, D. Campbell, A. Ekblad, and H. Johansson, “Photosynthetic Capacity in Relation to Nitrogen Content and Its Partitioning in Lichens with Different Photobionts,” Plant Cell and Environment 21, 361–372 (1998).CrossRefGoogle Scholar
  19. 19.
    G. O. Poinar, E. B. Peterson, and J. L. Platt, “Fossil Parmelia in New World Amber,” Lichenologist 32, 263–269 (2000).CrossRefGoogle Scholar
  20. 20.
    C. M. Rice, N. H. Trewin, and L. I. Anderson, “Geological Setting of the Early Devonian Rhynie Cherts, Aberdeenshire, Scotland, As Early Terrestrial Hot Spring System,” J. Geol. Soc. London 15(2), 203–214 (2002).CrossRefGoogle Scholar
  21. 21.
    J. Rikkinen, “Calicioid Lichens from European Tertiary Amber,” Mycologia 95 (6), 1032–1036 (2003).CrossRefGoogle Scholar
  22. 22.
    J. Rikkinen and G. O. Poinar, “A New Species of Resinicolous Chaenothecopsis (Mycocaliciaceae, Ascomycota) from 20 Million Year Old Bitterfeld Amber, with Remarks on the Biology of Resinicolous Fungi,” Mycol. Res. 104(Part 1), 7–15 (2000).CrossRefGoogle Scholar
  23. 23.
    J. Rikkinen and G. O. Poinar, “Fossilized Anzia (Lecanorales, Lichen-Forming Ascomycota) from European Tertiary Amber,” Mycol. Res. 106(Part 8), 984–990 (2002).CrossRefGoogle Scholar
  24. 24.
    J. W. Schopf, “Deep Divisions in the Tree of Life—What Does the Fossil Record Reveal?,” Biol. Bull. 196(3), 351–353 (1999).CrossRefGoogle Scholar
  25. 25.
    J. W. Schopf, “The Fossil Record: Tracing the Roots of the Cyanobacterial Lineage,” in The Ecology of Cyanobacteria Ed. by B. A. Whitton and M. Potts (Kluwer, Dordrecht, 2000), pp. 13–35.Google Scholar
  26. 26.
    V. N. Sergeev, Silicified Microfossils of the Precambrian and Cambrian of the Ural Mountains and Central Asia (Nauka, Moscow, 1992) [in Russian].Google Scholar
  27. 27.
    M. A. Sherwood-Pike, “Pelicothallos Dilcher, an Overlooked Fossil Lichen,” Lichenologist 17(Part 1), 114–115 (1985).CrossRefGoogle Scholar
  28. 28.
    N. S. Snigirevskaya, R. N. Belyakova, K. N. Demchenko, and I. V. Karatygin, “New Data on the Symbiotic Organism Winfrenatia reticulata within the Rhynie Flora (Early Devonian, Scotland),” in International Working Conference “Origin and Evolution of the Biosphere (Novosibirsk, 2005), p. 262 [in Russian].Google Scholar
  29. 29.
    W. E. Stein, G. D. Harmon, C. Boyce, et al., “Spongiophyton from the Lower Devonian of North America Reinterpreted As a Lichen,” Amer. J. Bot. 80(6), 93 (1993).Google Scholar
  30. 30.
    T. N. Taylor, H. Hass, W. Remy, and H. Kerp, “The Oldest Fossil Lichen,” Nature 378(6554), 244 (1995).CrossRefGoogle Scholar
  31. 31.
    T. N. Taylor, H. Hass, and H. Kerp, “A Cyanolichen from the Lower Devonian Rhynie Chert,” Amer. J. Bot. 84(7), 992–1004 (1997).CrossRefGoogle Scholar
  32. 32.
    W. A. Taylor, Ch. Free, C. Boyce, et al., “SEM Analysis of Spongiophyton Interpreted As a Fossil Lichen,” Int. J. Plant Sci. 165(5), 875–881 (2004a).CrossRefGoogle Scholar
  33. 33.
    T. N. Taylor, S. D. Klavins, M. Krings, et al., “Fungi from the Rhynie Chert: A View from the Dark Side,” Trans. R. Soc. Edingb. Earth Sci. 94(4), 457–473 (2004b).Google Scholar
  34. 34.
    N. H. Trewin, S. R. Fayers, and R. Kelman, “Subaqueous Silicification of the Contents of Small Ponds in the Early Devonian Hot Spring Complex, Rhynie, Scotland,” Can. J. Earth Sci. 40(11), 1697–1712 (2003).CrossRefGoogle Scholar
  35. 35.
    E. Tschermak-Woess, The Algal Partner (CRC Press, Boca Raton Fla., 1988), Vol. 1, pp. 39–92.Google Scholar
  36. 36.
    M. M. Walsh and D. R. Lowe, “Filamentous Microfossils from the 3500-Myr-Old Onverwacht Group, Barbeton Mountain Land, South Africa,” Nature 314, 530–532 (1985).CrossRefGoogle Scholar
  37. 37.
    Xunlai Yuan, Shuhai Xiao, and T. N. Taylor, “Lichen-Like Symbiosis 600 Million Years Ago,” Science 308(5724), 1017–1020 (2005).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2009

Authors and Affiliations

  • I. V. Karatygin
    • 1
  • N. S. Snigirevskaya
    • 1
  • S. V. Vikulin
    • 1
  1. 1.Komarov Botanical InstituteRussian Academy of SciencesSt. PetersburgRussia

Personalised recommendations