Paleontological Journal

, Volume 41, Issue 5, pp 520–536 | Cite as

Structure of the brachiopod lophophore

  • T. V. KuzminaEmail author
  • V. V. Malakhov


Data on the development, structure, and functional morphology of the brachiopod lophophore are analyzed. The common origin of the tentacle apparatus in Lophophorata from the postoral ciliary band of the larva is shown. The brachiopod lophophore is based on the brachial axis consisting of the brachial fold running along the row of tentacles. The brachial axis may be attached to the brachial (dorsal) mantle lobe (trocholophe, schizolophe, and ptycholophe lophophores) or extend freely into the mantle cavity to form coiling brachia (spirolophe, zygolophe, and plectolophe lophophores). The circulation of water flows through the mantle cavity in the brachiopods with attached and free lophophores is described. A new hypothesis on the sorting of particles suspended in water during filtration is proposed.

Key words

brachiopod lophophore Lophophorata 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. Atkins, “Ciliary Feeding Mechanisms of Brachiopods,” Nature 177(4511), 706–707 (1956).CrossRefGoogle Scholar
  2. 2.
    D. Atkins, “A New Species and Genus of Kraussinidae (Brachiopoda) with a Note on Feeding,” Proc. Zool. Soc. London 131, 559–582 (1958).Google Scholar
  3. 3.
    D. Atkins, “The Growth Stages of the Lophophore of the Brachiopods Platidia davidsoni (Eudes-Deslongchamps) and P. anomioides (Philippi), with Notes on the Feeding Mechanism,” J. Mar. Biol. Assoc. United Kingdom 38, 103–132 (1959).Google Scholar
  4. 4.
    D. Atkins, “The Ciliary Feeding Mechanism of the Megathyridae (Brachiopoda), and the Growth Stages of the Lophophore,” J. Mar. Biol. Assoc. United Kingdom 39, 459–479 (1960).Google Scholar
  5. 5.
    D. Atkins, “The Growth Stage of the Adult Structure of the Lophophore of the Brachiopod Megerlia truncata (L.) and M. echinata (Fischer et Oehlert),” J. Mar. Biol. Assoc. United Kingdom 41, 95–111 (1961).Google Scholar
  6. 6.
    D. Atkins and M. J. S. Rudwick, “The Lophophore and Ciliary Feeding Mechanisms of the Brachiopod Crania anomala (Müller),” J. Mar. Biol. Assoc. United Kingdom 42, 469–480 (1962).CrossRefGoogle Scholar
  7. 7.
    C. E. Beecher, “Morphology of the Brachia,” Bull. US Geol. Surv. 87, 105–112 (1897).Google Scholar
  8. 8.
    S. H. Chuang, “Brachiopoda” in Reproductive Biology of Invertebrates. Fertilization, Development, and Parental Care, Ed. by K. G. Adiyodi and R. G. Adiyodi (John Wiley and Sons Ltd., Chichester (UK), 1990), Vol. 6, pp. 211–254.Google Scholar
  9. 9.
    S. H. Chuang, “The Embryonic, Larval, and Early Postlarval Development of the Terebratellid Brachiopod Calloria inconspicua (Sowerby),” J. R. Soc. New Zealand 26(1), 119–137 (1996).Google Scholar
  10. 10.
    T. Davidson, “Descriptions of a Few New Recent Species of Brachiopoda,” Proc. Zool. Soc. London, Part 20, 75–83 (1852).Google Scholar
  11. 11.
    G. F. Elliot, “Brachial Development and Evolution in Terebratelloid Brachiopods,” Cambridge Phil. Soc. Biol. Rev. 28, 261–279 (1953).Google Scholar
  12. 12.
    C. C. Emig, “Le lophophore—structure significative des Lophophorates (Brachiopodes, Bryozoaires, Phoronidiens),” Zool. Scripta 5, 133–137 (1976).Google Scholar
  13. 13.
    C. C. Emig, “British and Other Phoronids,” in Synopses of the British Fauna, No. 13, Ed. by D. M. Kermack and R. S. K. Barnes (Academic, London, New York, 1979).Google Scholar
  14. 14.
    C. C. Emig, “Functional Disposition of the Lophophore in Living Brachiopoda,” Lethaia 25, 291–302 (1992).Google Scholar
  15. 15.
    P. Fischer and D. Oehlert, Brachiopodes. Expéditions scientifiques du Travailleur et du Talisman pendant les annés 1880–1883 (G. Masson, Paris, 1891).Google Scholar
  16. 16.
    T. H. J. Gilmour, “Ciliation and Function of the Food-Collecting and Waste-Rejecting Organs of the Lophophorates,” Can. J. Zool. 56, 2142–2155 (1978).Google Scholar
  17. 17.
    T. H. J. Gilmour, “Food-Collecting and Waste-Rejecting Mechanisms in Glottidia pyramidata and the Persistance of Lingulacean Brachiopods in the Fossil Record,” Can. J. Zool. 59, 1539–1547 (1981).Google Scholar
  18. 18.
    P. Grobe and C. Lüter, “Reproductive Cycles and Larval Morphology of Three Recent Species of Argyrotheca (Terebratellacea: Brachiopoda) from Mediterranean Submarine Caves,” Mar. Biol. 134, 595–600 (1999).CrossRefGoogle Scholar
  19. 19.
    L. H. Hyman, “Brachiopoda,” in The Invertebrates. Smaller Coelomate Groups (McGraw-Hill, New York, 1959), Vol. 5, pp. 516–609.Google Scholar
  20. 20.
    A. O. Kovalevsky, “Observation of the Development of Brachiopoda,” Izv. O-va Lyub. Estestvozn. Antropol. Etnogr. 14, 1–40 (1874).Google Scholar
  21. 21.
    M. LaBarbera, “Principles of Design of Fluid Transport Systems in Zoology,” Science 249(4972), 992–1000 (1990).CrossRefGoogle Scholar
  22. 22.
    A. Logan, “Ecological, Reproductive, and Ontogenetic Features in Pajaudina atlantica Logan (Thecideidae, Brachiopoda, Recent) from the Canary Islands,” Mar. Ecol. 25(3), 207–215 (2004).CrossRefGoogle Scholar
  23. 23.
    J. A. Long, “The Embryology of Three Species Representing Three Superfamilies of Articulate Brachiopoda,” PhD Thesis (Univ. Washington, Seattle, 1964).Google Scholar
  24. 24.
    C. Lüter, “A New Thecideid Genus and Species (Brachiopoda, Recent) from Submarine Caves of Osprey Reef (Queensland Plateau, Coral Sea, Australia),” J. Nat. Hist. 37, 1423–1432 (2003).CrossRefGoogle Scholar
  25. 25.
    V. V. Malakhov, “Some Stages in the Embryonic Development of the Articulate Brachiopod Cnismatocentrum sakhaliensis parvum and the Problem of the Evolution of the Coelomic Mesoderm Primordium,” Zool. Zh. 55(1), 66–75 (1976).Google Scholar
  26. 26.
    H. M. Muir-Wood, “Mesozoic and Cenozoic Terebratulidina, Terebratellidina,” in Treatise on Invertebrate Paleontology: Pt H. Brachiopoda (Univ. Kansas Press, Lawrence, 1965), pp. H6–H57.Google Scholar
  27. 27.
    C. Nielsen, “The Development of the Brachiopod Crania (Neocrania) anomala (O. F. Müller) and Its Phylogenetic Significance,” Acta Zool. 72(1), 7–28 (1991).CrossRefGoogle Scholar
  28. 28.
    C. Nielsen, “Trochophora Larvae: Cell-Lineages, Ciliary Bands and Body Regions. 2. Other Groups and General Discussion,” J. Exp. Zool. 304B, 401–447 (2005).CrossRefGoogle Scholar
  29. 29.
    J. H. Orton, “On Ciliary Mechanisms in Brachiopods and Some Polychaets, with a Comparison of the Ciliary Mechanisms on the Gills of Mollusks, Protochordata, Brachiopods, and Cryptocephalous Polychaets, with an Account of the Endostyle of Crepidula and Its Allies,” J. Mar. Biol. Assoc. United Kingdom 10(1), 283–326 (1914).Google Scholar
  30. 30.
    R. T. Paine, “Filter-Feeding Pattern and Local Distribution of the Brachiopod Discinisca strigata,” Biol. Bull. 123, 597–604 (1962).CrossRefGoogle Scholar
  31. 31.
    E. Percival, “A Contribution to the Life-History of the Brachiopod Terebratella inconspicua Sowerby,” Trans. R. Soc. New Zealand 74, 1–23 (1944).Google Scholar
  32. 32.
    E. Percival, “A Contribution to the Life History of the Brachiopod Tegulorhynchia nigricans,” Quart. J. Microscop. Sci. 101, 439–458 (1960).Google Scholar
  33. 33.
    C. G. Reed and R. A. Cloney, “Brachiopod Tentacles: Ultrastructure and Functional Significance of the Connective Tissue and Myoepithelial Cells in Terebratalia,” Cell Tissue Res. 185, 17–42 (1977).CrossRefGoogle Scholar
  34. 34.
    M. J. S. Rudwick, “The Feeding Mechanisms of Spire-Bearing Fossil Brachiopods,” Geol. Mag. 97, 369–383 (1960).Google Scholar
  35. 35.
    M. J. S. Rudwick, “Filter-Feeding Mechanisms in Some Brachiopods from New Zealand,” J. Lin. Soc. Zool. 44, 592–615 (1962).CrossRefGoogle Scholar
  36. 36.
    M. J. S. Rudwick, “The Feeding Mechanisms and Affinities of the Triassic Brachiopods Thecospira Zugmayer and Bactrynium Emmrich,” Palaeontology 11, 329–360 (1968).Google Scholar
  37. 37.
    M. J. S. Rudwick, Living and Fossil Brachiopods (Hutchinson and Co. Ltd., London, 1970).Google Scholar
  38. 38.
    S. Santagata, “Larval Development of Phoronis pallida (Phoronida): Implications for Morphological Convergence and Divergence among Larval Body Plans,” J. Morphol. 259, 347–358 (2004).CrossRefGoogle Scholar
  39. 39.
    R. Siewing, “Morphologische Utersuchungen zum Archicoelomatenproblem. 2. Die Körpergliederung bei Phoronis muelleri de Selys-Longchamps (Phoronida) Ontogenese—Larvae—Metamorphose—Adultus,” Zool. Jb. Anat. 92, 275–318 (1974).Google Scholar
  40. 40.
    B. Swedmark, “Gwynia capsula (Jeffreys), an Articulate Brachiopod with Brood Protection,” Nature 213, 1151–1152 (1967).CrossRefGoogle Scholar
  41. 41.
    P. Westbroek, J. Yanagida, and Y. Isa, “Functional Morphology of Brachiopod and Coral Skeletal Structures Supporting Ciliated Epithelia,” Paleobiology 6, 313–330 (1980).Google Scholar
  42. 42.
    A. Williams, M. A. James, C. C. Emig, et al., “Brachiopod Anatomy,” in Treatise on Invertebrate Paleontology: Pt H. Brachiopoda 1 (Univ. Kansas Press, Lawrence, 1997).Google Scholar
  43. 43.
    N. Yatsu, “On the Development of Lingula anatina,” J. Coll. Sci. Imp. Univ. Tokyo 17(4), 1–112 (1902).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2007

Authors and Affiliations

  1. 1.Moscow State UniversityLeninskie gory, MoscowRussia

Personalised recommendations