Paleontological Journal

, Volume 41, Issue 5, pp 481–488 | Cite as

When, where, and in what environment could the RNA world appear and evolve?

Article

Abstract

The environment necessary for the existence, amplification, and evolution of the RNA world, the difficulties of the abiogenous synthesis of RNA, and paradoxical situations with the stability of RNA, its functions, and the place of RNA in the geological history of the Earth are discussed. The chemical instability of the covalent structure of RNA in the aqueous medium is incompatible with the necessity of water for formation of its functionally active conformations (“water paradox”). The stable double-helical structure of RNA required for replication is incompatible with the stable compact conformations of single-stranded RNA molecules that are necessary for catalytic functions (conformational paradox). There was a very short time gap (or no gap at all) between the end of the massive meteorite bombardment of the Earth (3.9 Ga ago) and the appearance of the first evidence of cellular life (bacteria) in the Earth’s rocks (3.8–3.85 Ga ago or even earlier) (geological paradox). It is concluded that the RNA world could not appear, exist, or evolve into cellular forms of life on the Earth. This paper briefly discusses the possibility of an extraterrestrial origin of the RNA world and its extraterrestrial evolution with a subsequent distribution in space (mainly by comets) of the cellular form of life as more resistant to the environment as compared with free RNA.

Key words

RNA world abiogenic synthesis geologic history 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. F. A’Hearn, M. J. S. Belton, W. A. Delamere, et al., “Deep Impact: Excavating Comet Tempel 1,” Science 310, 258–264 (2005).CrossRefGoogle Scholar
  2. 2.
    Bacterial Paleontology, Ed. by A. Yu. Rozanov (Paleontol. Inst. Ross. Akad Nauk, Moscow, 2002) [in Russian].Google Scholar
  3. 3.
    A. A. Barenbaum, Galaxy, Solar System, Earth: Coordinated Processes and Evolution (GEOS, Moscow, 2002) [in Russian].Google Scholar
  4. 4.
    S. A. Benner, M. A. Carrigan, A. Ricardo, and F. Frye, “Setting the Stage: The History, Chemistry, and Geobiology behind RNA,” in The RNA World, Ed. by R. F. Gesteland, T. R. Cech, and J. F. Atkins (Cold Spring Lab. Press, New York, 2006), pp. 1–21.Google Scholar
  5. 5.
    A. G. Cairns-Smith, Genetic Takeover and the Mineral Origin of Life (Cambridge Univ. Press, Cambridge, 1982).Google Scholar
  6. 6.
    F. H. C. Crick, “The Origin of the Genetic Code,” J. Mol. Biol. 38, 367–379 (1968).CrossRefGoogle Scholar
  7. 7.
    N. L. Dobretsov, N. A. Kolchanov, and V. V. Suslov, “On the Early Stages of the Evolution of the Geosphere and Biosphere,” Paleontol. J. 40(Suppl. 4), S407–S424 (2006).CrossRefGoogle Scholar
  8. 8.
    M. Egholm, O. Buchardt, P. E. Nielsen, and R. H. Berg, “Peptide Nucleic Acids (PNA). Oligonucleotide Analogues with an Achiral Peptide Backbone,” J. Am. Chem. Soc. 114, 1895–1897 (1992).CrossRefGoogle Scholar
  9. 9.
    M. Egholm, O. Buchardt, L. Chiristensen, et al., “PNA Hybridizes to Complementary Oligonucleotides Obeying the Watson-Crick Hydrogen-Bonding Rules,” Nature 365, 566–568 (1993).CrossRefGoogle Scholar
  10. 10.
    A. Eschenmoser, “Chemical Etiology of Nucleic Acid Structure,” Science 284, 2118–2124 (1999).CrossRefGoogle Scholar
  11. 11.
    J. P. Ferris and G. Ertem, “Montmorillonite Catalysis of RNA Oligomer Formation in Aqueous Solution. A Model for Prebiotic Formation of RNA,” J. Am. Chem. Soc. 115, 12270–12275 (1993).CrossRefGoogle Scholar
  12. 12.
    J. P. Ferris, A. R. Hill, R. Liu, and L. E. Orgel, “Synthesis of Long Prebiotic Oligomers on Mineral Surfaces,” Nature 381, 59–61 (1996).CrossRefGoogle Scholar
  13. 13.
    J. P. Ferris, P. C. Joshi, K.-J. Wang, et al., “Catalysis in Prebiotic Chemistry: Application to the Synthesis of RNA Oligomers,” Adv. Space Res. 33, 100–105 (2004).CrossRefGoogle Scholar
  14. 14.
    L. M. Gerasimenko, R. B. Hoover, A. Yu. Rozanov, et al., “Bacterial Paleontology and Studies of Carbonaceous Chondrites,” Paleontol. Zh., No. 4, 103–125 (1999) [Paleontol. J. 33(4), 439–459 (1999)].Google Scholar
  15. 15.
    W. Gilbert, “The RNA World,” Nature 319, 618 (1986).CrossRefGoogle Scholar
  16. 16.
    D. A. Gilichinsky, E. A. Vorobyova, L. G. Erokhina, et al., “Long-Term Preservation of Microbial Ecosystems in Permafrost,” Adv. Space Res. 12, 255–263 (1992).CrossRefGoogle Scholar
  17. 17.
    T. Gold, “The Deep, Hot Biosphere,” Proc. Natl. Acad. Sci. USA 89, 6045–6049 (1992).CrossRefGoogle Scholar
  18. 18.
    R. B. Hoover, “Comets, Carbonaceous Meteorites, and the Origin of the Biosphere,” Biosci. Discussions 3, 23–70 (2006).CrossRefGoogle Scholar
  19. 19.
    R. B. Hoover and A. Yu. Rozanov, “Chemical Biomarkers and Microfossils in Carbonaceous Meteorites,” Instruments, Methods, and Missions for Astrobiol. Proc. SPIE 4495, 1–18 (2002).Google Scholar
  20. 20.
    W. Huang and J. P. Ferris, “Synthesis of 35–40 Mers of RNA Oligomers from Unblocked Monomers. A Simple Approach to the RNA World,” Chem. Commun. 12, 1458–1459 (2003).CrossRefGoogle Scholar
  21. 21.
    W. K. Johnston, P. J. Unrau, M. S. Lowrence, et al., “RNA-Catalyzed RNA Polymerization: Accurate and General RNA-Templated Primer Extension,” Science 292, 1319–1325 (2001).CrossRefGoogle Scholar
  22. 22.
    G. F. Joyce, “The Antiquity of RNA-Based Evolution,” Nature 418, 214–221 (2002).CrossRefGoogle Scholar
  23. 23.
    G. F. Joyce and L. E. Orgel, “Prospects for Understanding the Origin of RNA World,” in The RNA World, Ed. by R. F. Gesteland, T. R. Cech, and J. F. Atkins (Cold Spring Lab. Press, New York, 1999), pp. 49–77.Google Scholar
  24. 24.
    G. F. Joyce and L. E. Orgel, “Progress toward Understanding the Origin of RNA World,” in The RNA World, Ed. by R. F. Gesteland, T. R. Cech, and J. F. Atkins (Cold Spring Lab. Press, New York, 2006), pp. 23–56.Google Scholar
  25. 25.
    D. S. McKay, E. K. Gibson, K. L. Thomas-Keprta, et al., “Search for Past Life on Mars: Possible Relic Biogenic Activity in Martian Meteorite ALH84001,” Science 273, 924–930 (1996).CrossRefGoogle Scholar
  26. 26.
    S. J. Mojzsis, G. Arrhenius, K. D. McKeegan, et al., “Evidence for Life on Earth Before 3800 Million Years Ago,” Nature 384, 55–59 (1996).CrossRefGoogle Scholar
  27. 27.
    S. J. Mojzsis, R. Krishnamurthy, and G. Arrhenius, “Before RNA and After: Geophysical and Geochemical Constrains on Molecular Evolution,” in The RNA World, Ed. by R. F. Gesteland, T. R. Cech, and J. F. Atkins (Cold Spring Lab. Press, New York, 1999), pp. 1–47.Google Scholar
  28. 28.
    M. J. Mumma, M. A. DiSanti, K. Magee-Sauer, et al., “Parent Volatiles in Comet 9P/Tempel 1: Before and after Impact,” Science 310, 270–274 (2005).CrossRefGoogle Scholar
  29. 29.
    P. Nissen, J. Hansen, N. Ban, et al., “The Structural Basis of Ribosome Activity in Peptide Bond Synthesis,” Science 289, 920–930 (2000).CrossRefGoogle Scholar
  30. 30.
    L. E. Orgel, “Evolution of the Genetic Apparatus,” J. Mol. Biol. 38, 381–393 (1968).CrossRefGoogle Scholar
  31. 31.
    L. E. Orgel, “Prebiotic Chemistry and the Origin of the RNA World,” Crit. Rev. Biochem. Mol. Biol. 39, 99–123 (2004).CrossRefGoogle Scholar
  32. 32.
    A. Yu. Rozanov, “The Bacterial-Paleontological Approach to the Study of Meteorites,” Vestn. Ross. Akad. Nauk 70, 214–233 (2000) [Herald Russ. Acad. Sci. 70(2), 154–162 (2000)].Google Scholar
  33. 33.
    A. Yu. Rozanov, “Precambrian Geobiology,” Paleontol. J. 40(Suppl. 4), S434–S443 (2006).CrossRefGoogle Scholar
  34. 34.
    M. Schidlowski, “A 3.800-Million-Year Isotopic Record of Life from Carbon in Sedimentary Rocks,” Nature 333, 313–318 (1988).CrossRefGoogle Scholar
  35. 35.
    M. Schidlowski, Astrobiology-the Quest for the Conditions of Life, Ed. by G. Horneck and C. Baumstark-Khan (Springer-Verlag, Berlin, 2002), pp. 373–386.Google Scholar
  36. 36.
    J. W. Schopf, “Microfossils of the Early Archean Apex Chert: New Evidence of the Antiquity of Life,” Science 260, 640–646 (1993).CrossRefGoogle Scholar
  37. 37.
    A. S. Spirin, “Protein Biosynthesis, the RNA World, and the Origin of Life,” Vestn. Ross. Akad. Nauk 71, 320–328 (2001) [Herald Russ. Acad. Sci. 71(2), 146–153 (2001)].Google Scholar
  38. 38.
    A. S. Spirin, “Omnipotent RNA,” FEBS Letters 530, 4–8 (2002).CrossRefGoogle Scholar
  39. 39.
    A. S. Spirin, “Ribonucleic Acids: The Key Link of Living Matter,” Vestn. Ross. Akad. Nauk 73, 117–127 (2003) [Herald Russ. Acad. Sci. 73(1), 30–39 (2003)].Google Scholar
  40. 40.
    A. S. Spirin, “Origin, Possible Forms of Being, and Size of the Primeval Organisms,” Paleontol. Zh., No. 4, 25–32 (2005a) [Paleontol. J. 39(4), 364–371 (2005a)].Google Scholar
  41. 41.
    A. S. Spirin, “The RNA World and Its Evolution,” Mol. Biol. 39(4), 550–556 (2005b) [Mol. Biol. 39(4), 466–472 (2005b)].CrossRefGoogle Scholar
  42. 42.
    T. A. Steitz and P. B. Moore, “RNA, the First Macromolecular Catalyst: The Ribosome Is a Ribozyme,” Trends Biochem. Sci. 28, 411–418 (2003).CrossRefGoogle Scholar
  43. 43.
    T. O. Stevens and J. P. McKinley, “Lithoautotrophic Microbial Ecosystems in Deep Basalt Aquifers,” Science 270, 450–454 (1995).CrossRefGoogle Scholar
  44. 44.
    C. Tuerk and L. Gold, “Systematic Evolution of Ligands by Exponential Enrichment,” Science 249, 505–510 (1990).CrossRefGoogle Scholar
  45. 45.
    E. Vorobyova, V. Soina, M. Gorlenko, et al., “The Deep Cold Biosphere: Facts and Hypothesis,” FEMS Microbiol. Rev. 20, 277–290 (1997).CrossRefGoogle Scholar
  46. 46.
    C. Woese, The Genetic Code: The Molecular Basis for Genetic Expression (Harper and Row, New York, 1967).Google Scholar
  47. 47.
    G. A. Zavarzin, Phenotypic Systematics of Bacteria: The Range of Logical Possibilities (Nauka, Moscow, 1974) [in Russian].Google Scholar
  48. 48.
    G. A. Zavarzin, “The Evolvement of the Biosphere,” Vestn. Ross. Akad. Nauk 71, 988–997 (2001) [Herald Russ. Acad. Sci. 71(6), 611–622 (2001)].Google Scholar
  49. 49.
    G. A. Zavarzin, “The Evolution of the Biosphere: The View of Geologists and Biologists,” Vestn. Ross. Akad. Nauk 76(1), 166–168 (2006a) [Herald Russ. Acad. Sci. 76(1), 97–99 (2006a)].Google Scholar
  50. 50.
    G. A. Zavarzin, “Does Evolution Make the Essence of Biology?,” Vestn. Ross. Akad. Nauk 76, 522–534 (2006b) [Herald Russ. Acad. Sci. 76 (3), 292–302 (2006b)].Google Scholar
  51. 51.
    G. A. Zavarzin, “Microbial Biosphere,” Paleontol. J. 40(Suppl. 4), S425–S433 (2006c).CrossRefGoogle Scholar
  52. 52.
    S. I. Zhmur, A. Yu. Rozanov, and V. M. Gorlenko, “Lithified Remains of Microorganisms in Carbonaceous Chondrites,” Geokhimiya, No. 1, 66–68 (1993).Google Scholar
  53. 53.
    D. G. Zvyagintsev, D. A. Gilichinskii, S. A. Blagodatskii, et al., “Survival Time of Microorganisms in Permafrost Sedimentary Rocks and Buried Soils,” Mikrobiologiya 54, 155–161 (1985).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2007

Authors and Affiliations

  1. 1.Institute of Protein ResearchPushchino, Moscow oblastRussia

Personalised recommendations