Paleontological Journal

, Volume 40, Issue 6, pp 655–667 | Cite as

On the brain of a primitive bird from the upper Cretaceous of European Russia

  • E. N. Kurochkin
  • S. V. Saveliev
  • A. A. Postnov
  • E. M. Pervushov
  • E. V. Popov
Article

Abstract

Cerebavis cenomanica gen. et sp. nov. from the Middle Cenomanian of the Volgograd Region (Russia) is described based on a brain mold. The brain of Cerebavis is characterized by a mosaic combination of primitive and advanced features. The brain weight is estimated as approximately 1 g. The cerebrum is relatively very large, but lacks sulci. The brain mold has long olfactory lobes with large olfactory bulbs, a well-developed epiphysis, and a parietal organ. The auditory tubercles on the dorsal surface of the midbrain are well developed. The optical lobes are located under the auditory lobes, caudoventral to the cerebral hemispheres. The cerebellum is not preserved, but its imprints just behind the midbrain suggest that it was probably relatively small and extended dorsoventrally. The brain of Cerebavis is similar in some features to that of Archaeopteryx, but is substantially more advanced and more specialized. Cerebavis is similar to living ornithurine birds in the large cerebral hemispheres, but differs in the absence of a well-developed neostriatum, the presence of excessively developed olfactory lobes, and in the pattern of the midbrain. Thus, senses of smell, eyesight, and hearing were well developed in Cerebavis. It could have been equally active in the afternoon and at night. The unique brain design demonstrated by Cerebavis has not been repeated in subsequent evolution. It provides evidence for a wide diversity of feathered creatures in the past. Cerebavis probably belongs to the Enantiornithes.

Key words

Cretaceous bird Enantiornithes fossil brain avian brain mold Late Cretaceous Cenomanian Volgograd Region Russia 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. S. Abyzov, M. Welsh, F. Weatall, et al., Bacterial Paleontology (Paleontol. Inst. Ross. Akad. Nauk, Moscow, 2002) [in Russian].Google Scholar
  2. 2.
    P. D. Alonso, A. C. Milner, R. A. Ketcham, et al. “The Avian Nature of the Brain and Ear of Archaeopteryx,” Nature 430(7000), 666–669 (2004).CrossRefGoogle Scholar
  3. 3.
    A. O. Averianov, E. N. Kurochkin, E. M. Pervushov, and A. V. Ivanov, “Two Bone Fragments of Ornithocheiroid Pterosaurs from the Cenomanian of Volgograd Region, Southern Russia,” Acta Palaeontol. Polon. 50(2), 251–256 (2005).Google Scholar
  4. 4.
    G. R. de Beer, Archaeopteryx lithographica: A Study Based upon the British Museum Specimen (Taylor Garnett Evans and Co., Watford, 1954).Google Scholar
  5. 5.
    D. A. Burnham, “New Information on Bambiraptor feinbergi (Theropoda: Dromaeosauridae) from the Late Cretaceous of Montana,” in Feathered Dragons, Ed. by P. J. Currie, E. B. Koppelhus, M. A. Shugar, and J. L. Wright (Indiana Univ. Press, Bloomington, 2004), pp. 67–111.Google Scholar
  6. 6.
    L. M. Chiappe and L. M. Witmer (eds.), Mesozoic Birds: Above the Heads of Dinosaurs (Univ. California Press, Berkeley, 2002).Google Scholar
  7. 7.
    P. J. Currie and X.-J. Zhao, “A New Troodontid (Dinosauria, Theropoda) Braincase from the Dinosaur Park Formation (Campanian) of Alberta,” Can. J. Earth Sci. 30(10–11), 2231–2247 (1993).Google Scholar
  8. 8.
    C. Dechaseaux, “Le cerveau d’Archaeopteryx est-il de “type avien” ou de “type reptilien”?,” CR Acad. Sci. Paris, Ser. D 267(25), 2108–2110 (1968).Google Scholar
  9. 9.
    C. Dechaseaux, “Moulages endocraniens d’oiseaux de l’Éocène supérieur du bassin de Paris,” Ann. Paléontol. Vertébr. 56(1), 69–72 (1970).Google Scholar
  10. 10.
    T. Edinger, “The Brain of Archaeopteryx,” Ann. Mag. Natur. Hist., Ser. 9 18(9), 151–156 (1956).Google Scholar
  11. 11.
    T. Edinger, “The Brain of Pterodactylus,” Am. J. Sci. 239(9), 665–682 (1941).CrossRefGoogle Scholar
  12. 12.
    T. Edinger, “The Brains of the Odontognathae,” Evolution 5(1), 6–24 (1951).CrossRefGoogle Scholar
  13. 13.
    A. Elzanowski and P. M. Galton, “Braincase of Enaliornis, an Early Cretaceous Bird from England,” J. Vertebr. Paleontol. 11(1), 90–107 (1991).CrossRefGoogle Scholar
  14. 14.
    A. Elzanowski and P. Wellnhofer, “Cranial Morphology of Archaeopteryx: Evidence from the Seventh Skeleton,” J. Vertebr. Paleontol. 16(1), 81–94 (1996).CrossRefGoogle Scholar
  15. 15.
    P. M. Galton and L. D. Martin, “Postcranial Anatomy and Systematics of Enaliornis Seeley, 1876, a Foot-propelled Diving Bird (Aves: Ornithurae: Hesperornithiformes) from the Early Cretaceous of England,” Rev. Paléobiol. 21(2), 489–538 (2002).Google Scholar
  16. 16.
    L. M. Gerasimenko, I. V. Goncharova, G. A. Zavarzin, et al., “Dynamics of Release and Absorption of Phosphorus by Cyanobacteria,” in Ecosystem Rearrangements and the Evolution of the Biosphere, Ed. by A. Yu. Rozanov and M. A. Semikhatov (Nedra, Moscow, 1994), Vol. 1, pp. 348–353 [in Russian].Google Scholar
  17. 17.
    A. N. Iwaniuk and J. E. Nelson, “Can Endocranial Volume be Used as an Estimate of Brain Size in Birds?,” Can. J. Zool. 80(1), 16–23 (2002).CrossRefGoogle Scholar
  18. 18.
    H. J. Jerison, “Brain Evolution and Archaeopteryx,” Nature 219(5161), 1381–1382 (1968).CrossRefGoogle Scholar
  19. 19.
    H. J. Jerison, “Evolution of the Brain and Intelligence” (Academic, New York, 1973).Google Scholar
  20. 20.
    E. N. Kurochkin, “Synopsis of Mesozoic Birds and Early Evolution of Class Aves,” Archaeopteryx, No. 13, 47–66 (1995).Google Scholar
  21. 21.
    E. N. Kurochkin, A New Enantiornithid of the Mongolian Late Cretaceous, and a General Appraisal of the Infraclass Enantiornithes (Aves) (Palaeontol. Inst. Russ. Acad. Sci., Moscow, 1996).Google Scholar
  22. 22.
    E. N. Kurochkin, “New Ideas about the Origin and Early Evolution of Birds,” in Achievements and Problems of Ornithology of Northern Eurasia at the Boundary of Centuries, Ed. by E. N. Kurochkin and I.I. Rakhimov. (Magarif, Kazan, 2001), pp. 68–96 [in Russian].Google Scholar
  23. 23.
    E. N. Kurochkin, “Parallel Evolution of Theropod Dinosaurs and Birds,” Zool. Zh. 85(3), 283–297 (2006).Google Scholar
  24. 24.
    E. N. Kurochkin, “New Fossil Birds from the Cretaceous of Russia,” in Sixth International Meeting of the Society of Avian Paleontology and Evolution: Abstracts, Quillan, France, Ed. by E. Buffetaut and J. Le Loeuff (Quillan, 2004), pp. 35–36.Google Scholar
  25. 25.
    O. Ch. Marsh, Odonthornithes: A Monograph on the Extinct Toothed Birds of North America (Govern. Print. Office, Washington, 1880).Google Scholar
  26. 26.
    L. D. Martin, “The Origin and Early Radiation of Birds,” in Perspectives in Ornithology, Ed. by A. H. Brush and G. A. Clark (Cambridge Univ. Press, Cambridge, 1983), pp. 291–338.Google Scholar
  27. 27.
    L. D. Martin, “A New Skeletal Model of Archaeopteryx,” Archaeopteryx 13, 33–40 (1995).Google Scholar
  28. 28.
    J. Mlíkovský, “Zwei Vogelgehirne aus dem Miozän Böhmens,” Casopis Mineral. Geol. 25(4), 409–413 (1980).Google Scholar
  29. 29.
    R. Nieuwenhuys, The Central Nervous System of Vertebrates (Springer, Berlin-Heidelberg, 1998).Google Scholar
  30. 30.
    A. G. Olfer’ev and A. S. Alekseev, Stratigraphic Chart of Upper Cretaceous Deposits of the East European Platform: Explanatory Report (Paleontol. Inst. Ross. Akad. Nauk, Moscow, 2005) [in Russian].Google Scholar
  31. 31.
    H. Osmólska, “Evidence on Relation of Brain to Endocranial Cavity in Oviraptorid Dinosaurs,” Acta Palaeontol. Polon. 49(2), 321–324 (2004).Google Scholar
  32. 32.
    E. M. Pervushov, M. S. Arkhangelsky, and A. V. Ivanov, Catalogue of Localities with Remains of Marine Reptiles in Jurassic and Cretaceous Deposits of the Lower Volga Region (Kolledzh, Saratov, 1999a) [in Russian].Google Scholar
  33. 33.
    E. M. Pervushov, V. G. Ochev, A. V. Ivanov, and B. T. Yanin, “Paleoecologostratinomic Characteristics of the Turonian Phosphorite Horizon in the Vicinity of Zhirnovsk (Volgograd Region),” in Selected Works of All-Russia Scientific Conference on the Problems of Biosphere Studies (Kolledzh, Saratov, 1999b), pp. 82–103 [in Russian].Google Scholar
  34. 34.
    S. V. Saveliev, Comparative Anatomy of the Vertebrate Nervous System (Geotar-Med, Moscow, 2001) [in Russian].Google Scholar
  35. 35.
    S. V. Saveliev, The Origin of Brain (Vedi, Moscow, 2005) [in Russian].Google Scholar
  36. 36.
    K. N. Whetstone, “Braincase of Mesozoic Birds: 1. New Preparation of the “London” Archaeopteryx,” J. Vertebr. Paleontol. 2(4), 439–452 (1983).CrossRefGoogle Scholar
  37. 37.
    L. M. Witmer, S. Chatterjee, J. Franzosa, and T. Rowe, “Neuroanatomy of Flying Reptiles and Implications for Flight, Posture and Behaviour,” Nature 425(6991), 950–953 (2002).Google Scholar
  38. 38.
    X. Xu, M. A. Norell, X.-L. Wang, et al., “A Basal Troodontid from the Early Cretaceous of China,” Nature 415(6873), 780–784 (2002).Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2006

Authors and Affiliations

  • E. N. Kurochkin
    • 1
  • S. V. Saveliev
    • 2
  • A. A. Postnov
    • 3
  • E. M. Pervushov
    • 4
  • E. V. Popov
    • 4
  1. 1.Paleontological InstituteRussian Academy of SciencesMoscowRussia
  2. 2.Scientific Research Institute of Human MorphologyRussian Academy of Medical SciencesMoscowRussia
  3. 3.Lebedev Physical InstituteRussian Academy of SciencesMoscowRussia
  4. 4.Saratov State UniversitySaratovRussia

Personalised recommendations