Advertisement

Optics and Spectroscopy

, Volume 127, Issue 4, pp 738–741 | Cite as

Specific Features of Interactions of Polyvinylpyrrolidone Molecules with Zinc and Silver Ions in Aqueous Solutions According to IR Spectroscopy Data

  • N. A. Volkova
  • S. K. EvsropievEmail author
  • N. V. Nikonorov
  • K. S. Evstropyev
OPTICAL MATERIALS
  • 7 Downloads

Abstract

Aqueous solutions containing polyvinylpyrrolidone and zinc and silver nitrates are studied by IR spectroscopy. It is shown that introduction of zinc and silver nitrates into polyvinylpyrrolidone solutions leads to a shift of the polymer absorption bands to lower wavenumbers. The results obtained indicate the possibility of formation of complexes consisting of polymer molecules and metal ions.

Keywords:

IR spectroscopy absorption spectrum polyvinylpyrrolidone metal ions 

Notes

FUNDING

This work was partially (S.K. Evstropiev) supported by the Russian Science Foundation, project no. 19-19-00596.

CONFLICT OF INTEREST

The authors declare that they have no conflict of interest.

REFERENCES

  1. 1.
    K. M. Koczkur, S. Mourdikoudis, L. Polavarapu, and S. E. Skrabalak, Dalton Trans. 44, 17883 (2015).CrossRefGoogle Scholar
  2. 2.
    H. Liu, B. Zhang, H. Shi, Y. Tang, K. Jiao, and X. Fu, J. Mater. Chem. 18, 2573 (2008).CrossRefGoogle Scholar
  3. 3.
    A. S. Kulagina, S. K. Evstrop’ev, N. N. Rosanov, and V. V. Vlasov, Semiconductors 52, 997 (2018).ADSCrossRefGoogle Scholar
  4. 4.
    S. K. Evstropiev, I. M. Kislyakov, I. V. Bagrov, and I. M. Belousova, Polym. Adv. Technol. 27, 314 (2016).  https://doi.org/10.1002/pat.3642 CrossRefGoogle Scholar
  5. 5.
    Kan Caixia, Cai Weiping, Li Cuncheng, and Zhang Li-de, J. Mater. Res. 20, 320 (2005).ADSCrossRefGoogle Scholar
  6. 6.
    Zhang Ying, Liu Jing-Ying, Ma Song, Zhang Ya-Jing, Zhao Xiang, Zhang Xiang-Dong, and Zhang Zhi-Dong, J. Mater. Sci.: Mater. Med. 21, 1205 (2010).Google Scholar
  7. 7.
    K. V. Anasuya, M. K. Veeraiah, S. Prasannakumar, P. Hemalatha, and M. Manju, Indian J. Adv. Chem. Sci. 2, 12 (2014).Google Scholar
  8. 8.
    M. Naseri, A. Dehzangi, H. M. Kamari, A. See, M. Abedi, R. Salasi, A. N. Goli-Kand, P. Dianat, F. Larki, A. Abedini, J. Hassan, A. K. Far, and B. Y. Majlis, Metals 6, 181 (2016).CrossRefGoogle Scholar
  9. 9.
    K. V. Anasuya, M. K. Veeraiah, P. Hemalatha, and M. Manju, IOSR J. Appl. Chem. 7 (8), 61 (2014). www.iosrjournals.org.Google Scholar
  10. 10.
    Y. Borodko, S. E. Habas, M. Koebel, P. Yang, H. Frei, and G. A. Somorjai, J. Phys. Chem. B 110, 23052.Google Scholar
  11. 11.
    Guo Lin, Yang Shihe, Yang Chulei, Yu Ping, Wang Jiannong, Ge Weikun, and K. L. Wong George, Appl. Phys. Lett. 76, 2901 (2000).ADSCrossRefGoogle Scholar
  12. 12.
    Wang Hongshui, Qiao Xueliang, Chen Jianguo, Wang Xiaojian, and Ding Shiyuan, Mater. Chem. Phys. 94, 449 (2005).CrossRefGoogle Scholar
  13. 13.
    K. S. Evstrop’ev, Yu. A. Gatchin, S. K. Evstrop’ev, K. V. Dukels’skii, I. M. Kislyakov, N. A. Pegasova, and I. V. Bagrov, Opt. Spectrosc. 120, 415 (2016).  https://doi.org/10.7868/S003040341603006 ADSCrossRefGoogle Scholar
  14. 14.
    S. K. Evstrop’ev, Yu. A. Gatchin, K. S. Evstrop’ev, K. V. Dukel’skii, and I. M. Kislyakov, Opt. Spectrosc. 119, 943 (2015).ADSCrossRefGoogle Scholar
  15. 15.
    M. C. Divyasree, E. Shiju, J. Francis, P. T. Anusha, S. Venugopal Rao, and K. Chandrasekharan, Mater. Chem. Phys. 197, 208 (2017).CrossRefGoogle Scholar
  16. 16.
    N. Soltani, E. Saion, M. Erfani, K. Rezaee, G. Bahmanrokh, G. P. C. Drummen, A. Bahrami, and M. Z. Hussein, Int. J. Mol. Sci. 13, 12412 (2012).  https://doi.org/10.3390/ijms131012412 CrossRefGoogle Scholar
  17. 17.
    Wang Hongshui, Qiao Xueliang, Chen Jianguo, Wang Xiaojian, and Ding Shiyuan, Mater. Chem. Phys. 94, 449 (2005).CrossRefGoogle Scholar
  18. 18.
    Zhang Zongtao, Zhao Bin, and Hu Liming, J. Solid State Chem. 121, 105 (1996).  https://doi.org/10.1006/jssc.1996.0015 ADSCrossRefGoogle Scholar
  19. 19.
    O. V. Istomina, S. K. Evstropiev, E. V. Kolobkova, and A. O. Trofimov, Opt. Spectrosc. 124, 774 (2018).ADSCrossRefGoogle Scholar
  20. 20.
    A. Dhanalakshmi, C. Amutha, B. Lawrence, K. Kulathuraan, V. Ramadas, and B. Natarajan, Int. J. Curr. Res. 5, 3408 (2013).Google Scholar
  21. 21.
    Tachikawa Shingo, Noguchi Atsushi, Tsuge Takeharu, Hara Masahiko, Odawara Osamu, and Wada Hiroyki, Materials 4, 1132 (2011).  https://doi.org/10.3390/ma4061132 CrossRefGoogle Scholar
  22. 22.
    S. K. Evstropiev, Yu. A. Gatchin, K. S. Evstropyev, and E. B. Romanova, Opt. Eng. 55, 047108 (2016).ADSCrossRefGoogle Scholar
  23. 23.
    T. Gutul, E. Rusu, N. Condur, V. Ursaki, E. Goncearenco, and P. Vlazan, Beilstein J. Nanotechnol. 5, 402 (2014).  https://doi.org/10.3762/bjnano.5.47 CrossRefGoogle Scholar
  24. 24.
    S. K. Evstropiev, V. N. Vasilyev, N. V. Nikonorov, E. V. Kolobkova, N. A. Volkova, and I. A. Boltenkov, Chem. Eng. Process.: Process Intens. 134, 45 (2018).  https://doi.org/10.1016/j.cep.2018.10.020 CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • N. A. Volkova
    • 1
  • S. K. Evsropiev
    • 1
    • 2
    Email author
  • N. V. Nikonorov
    • 1
  • K. S. Evstropyev
    • 1
  1. 1.ITMO UniversitySt. PetersburgRussia
  2. 2.St. Petersburg State Institute of Technology (Technical University)St. PetersburgRussia

Personalised recommendations