Advertisement

Optics and Spectroscopy

, Volume 127, Issue 4, pp 602–604 | Cite as

Angular Dependences of Transmission Spectra of Photonic-Crystal Films Based on Aluminum Oxide

  • P. P. SverbilEmail author
  • V. S. Gorelik
  • Dongxue Bi
  • Guang Tao Fei
  • Shao Hui Xu
  • Xu Dong Gao
SPECTROSCOPY OF CONDENSED STATES

Abstract

The angular dependences of the transmission of a one-dimensional photonic crystal based on porous anodic aluminum oxide are studied in the wavelength range of 320–1200 nm. The possibility of using porous one-dimensional photonic crystals based on aluminum oxide as selective narrowband optical filters and mirrors is studied.

Keywords:

photonic crystal stop band narrowband filter transmission spectrum 

Notes

FUNDING

This work was partially supported by the Russian Foundation for Basic Research (project no. 18-02-00181), China Scholarship Council, and National Natural Science Foundation of China (project nos. 51671183 and 51701207).

CONFLICT OF INTEREST

The authors declare that they have no conflict of interest.

REFERENCES

  1. 1.
    V. P. Bykov, Sov. Phys. JETP 35, 269 (1972).ADSGoogle Scholar
  2. 2.
    E. Yablonovitch, Phys. Rev. Lett. 58, 2059 (1987).ADSCrossRefGoogle Scholar
  3. 3.
    S. John, Phys. Rev. Lett. 58, 2486 (1987).ADSCrossRefGoogle Scholar
  4. 4.
    V. S. Gorelik, Quantum Electron. 37, 409 (2007).ADSCrossRefGoogle Scholar
  5. 5.
    Liu Yisen, Chang Yi, Ling Zhiyuan, Hu Xing, and Li Yi, Electrochem. Commun. 13, 1336 (2011).CrossRefGoogle Scholar
  6. 6.
    S. E. Svyakhovskiy, A. I. Maydykovsky, and T. V. Murzina, J. Appl. Phys. 112, 013106 (2012).ADSCrossRefGoogle Scholar
  7. 7.
    E. L. Ivchenko and A. N. Poddubnyi, Phys. Solid State 48, 581 (2006).ADSCrossRefGoogle Scholar
  8. 8.
    V. S. Gorelik and V. V. Filatov, Bull. Lebedev Phys. Inst. 37, 56 (2010).ADSCrossRefGoogle Scholar
  9. 9.
    V. S. Gorelik and V. V. Filatov, Inorg. Mater. 48, 361 (2012).CrossRefGoogle Scholar
  10. 10.
    V. S. Gorelik, L. S. Lepnev, and A. O. Litvinova, Inorg. Mater. 50, 1003 (2014).CrossRefGoogle Scholar
  11. 11.
    L. Pavesi, Riv. Nuovo Cimento 20, 1 (1997).CrossRefGoogle Scholar
  12. 12.
    B. Wang, G. T. Fei, M. Wang, M. G. Kong, and L. D. Zhang, Nanotecnology 18, 365601 (2007).CrossRefGoogle Scholar
  13. 13.
    V. S. Gorelik, S. O. Klimonsky, V. V. Filatov, and K. S. Napolskii, Opt. Spectrosc. 120, 534 (2016).ADSCrossRefGoogle Scholar
  14. 14.
    V. S. Gorelik, M. M. Yashin, Bi Dongxue, and Fei Guang Tao, Opt. Spectrosc. 124, 167 (2018).CrossRefGoogle Scholar
  15. 15.
    V. S. Gorelik, P. P. Sverbil, V. V. Filatov, Bi Dongxue, Fei Guang Tao, and Xu Shao Hui, Photon. Nanostruct.—Fundam. Appl. 32, 6 (2018).Google Scholar
  16. 16.
    M. Born and E. Wolf, Principles of Optics, 4th ed. (Pergamon, Oxford, 1970).Google Scholar
  17. 17.
    A. Yariv and P. Yeh, Optical Waves in Crystals. Propagation and Control of Laser Radiation (Wiley, New York, 1984).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • P. P. Sverbil
    • 1
    Email author
  • V. S. Gorelik
    • 1
    • 2
  • Dongxue Bi
    • 2
  • Guang Tao Fei
    • 3
  • Shao Hui Xu
    • 3
  • Xu Dong Gao
    • 3
  1. 1.Lebedev Physical Institute, Russian Academy of SciencesMoscowRussia
  2. 2.Bauman Moscow State Technical UniversityMoscowRussia
  3. 3.Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid-State Physics, Hefei Institutes of Physical Science, Chinese Academy of SciencesHefeiChina

Personalised recommendations