Optics and Spectroscopy

, Volume 127, Issue 4, pp 647–655 | Cite as

Investigation of the Possibility of Measuring the Radius of Mirrors with Instruments Equipped with Wavefront Sensors

  • A. A. SakharovEmail author
  • T. S. Piskunov
  • N. V. Baryshnikov
  • I. V. Zhivotovskii
  • E. E. Mukhina
  • M. V. Vyazovykh


A technique has been developed for measuring the radii of curvature of optical parts. A scheme of the device based on a wavefront sensor is proposed, which is characterized by a minimum measurement error. The theoretical substantiation of the measurement technique is given. A number of methods that make it possible to measure the radii of curvature of optical parts are considered. The reasons for an increase in the measurement error are analyzed. The results of measurements according to the given methodology with an original prototype device are considered.


mirror radius metrology Shack–Hartmann sensor wavefront sensor radius of curvature measurement technique measurement errors Zemax 



The authors declare that they have no conflict of interest.


  1. 1.
    A. Nikitin, J. Sheldakova, A. Kudryashov, D. Denisov, V. Karasik, and A. Sakharov, Proc. SPIE 9369, 936905-1 (2015). CrossRefGoogle Scholar
  2. 2.
    A. K. Srivastava, K. C. Sati, and Satyander Kumar, Int. J. Sci. Eng. Res. 8, 1752 (2017).Google Scholar
  3. 3.
    Z. Yang, Z. Gao, and Q. Yuan, Opt. Lasers Eng. 56, 35 (2014). CrossRefGoogle Scholar
  4. 4.
    M. S. Kovalev, G. K. Krasin, S. B. Odinokov, A. B. So-lomashenko, and E. Yu. Zlokazov, Opt. Express 27, 1563 (2019). ADSCrossRefGoogle Scholar
  5. 5.
    B. C. Platt and R. Shack, J. Refract. Surg. 17, 573 (2001). CrossRefGoogle Scholar
  6. 6.
    W. Southwell, J. Opt. Soc. Am. 70, 998 (1980). ADSCrossRefGoogle Scholar
  7. 7.
    Active Optics Company. Shack-Hartmann Sensor WFS-11.26-3.2-0.136. Scholar
  8. 8.
    D. R. Neal, J. Copland, and D. A. Neal, Proc. SPIE 4779, 148 (2002). ADSCrossRefGoogle Scholar
  9. 9.
    A. Chernyshov, U. Sterr, F. Riehle, J. Helmcke, and J. Pfund, Appl. Opt. 44, 6419 (2005). ADSCrossRefGoogle Scholar
  10. 10.
    A. Nikitin, N. Baryshnikov, D. Denisov, et al., Proc. SPIE 10539, 105390Z-1 (2018).
  11. 11.
    N. V. Baryshnikov, D. G. Denisov, V. E. Karasik, and A. A. Sakharov, in Proceedings of the 9th International Conference of Young Scientists and Specialists Optics–2015 (ITMO, St. Petersburg, 2015), p. 508.Google Scholar
  12. 12.
    Zygo Corp., PTI 250 Operating Manual OMP-0490G (2004), p. 7.Google Scholar
  13. 13.
    Thorlabs Linear Translation Stage. Scholar
  14. 14.
    Laser Components Translation Stage. Scholar
  15. 15.
    D. R. Neal, J. Copland, D. A. Neal, D. M. Topa, and P. Riera, Measurement of Lens Focal Length Using Multi-Curvature Analysis of Shack-Hartmann Wavefront Data. Scholar
  16. 16.
    N. V. Baryshnikov, I. V. Zhivotovskii, V. E. Karasik, and A. A. Sakharov, Kontenant 17 (3), 129 (2018).Google Scholar
  17. 17.
    Radiant Zemax, Zemax User’s Manual (Radiant Zemax LLC, 2012), p. 205.Google Scholar
  18. 18.
    N. V. Baryshnikov, D. G. Denisov, I. V. Zhivotovskii, et al., RF Patent No. 2667323 (2009).Google Scholar
  19. 19.
    P. R. Bevington and D. K. Robinson, Data Reduction and Error Analysis for the Physical Sciences (McGraw-Hill, New York, 1969).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • A. A. Sakharov
    • 1
    Email author
  • T. S. Piskunov
    • 1
  • N. V. Baryshnikov
    • 1
  • I. V. Zhivotovskii
    • 1
  • E. E. Mukhina
    • 1
  • M. V. Vyazovykh
    • 1
  1. 1.Bauman Moscow State Technical UniversityMoscowRussia

Personalised recommendations