Optics and Spectroscopy

, Volume 127, Issue 4, pp 706–711 | Cite as

On the Goos–Hänchen Effect in the Case of Excitation of Surface Waves in the Kretschmann Scheme

  • A. B. PetrinEmail author


A theoretical method for investigating reflection of a finite-aperture plane light beam from a flat-layered structure in the Kretschmann scheme is considered. The developed theory is applied for investigating the Goos–Hänchen effect, which arises upon incidence of a linearly polarized light beam with the polarization vector lying in the plane of incidence (p-polarized beam) and which is that, upon reflection, the incident beam is divided into two close beams of the same polarization. The accuracy of sensors based on this effect is discussed.


surface waves surface plasmons integrated optics optical sensors 



The author declares that he has no conflict of interest.


  1. 1.
    J. Homola, S. S. Yee, and G. Gauglitz, Sens. Actuators, B 54, 3 (1999).CrossRefGoogle Scholar
  2. 2.
    W. L. Barnes, A. Dereux, and T. W. Ebbesen, Nature (London, U.K.) 424, 824 (2003).ADSCrossRefGoogle Scholar
  3. 3.
    J. Homola, Chem. Rev. 108, 462 (2008).CrossRefGoogle Scholar
  4. 4.
    G. Spoto and M. Minunni, J. Phys. Chem. Lett. 3, 2682 (2012).CrossRefGoogle Scholar
  5. 5.
    H. Raether, Surface Plasmons (Springer, Berlin, 1988).Google Scholar
  6. 6.
    W. L. Barnes, J. Opt. A: Pure Appl. Opt. 8, S87 (2006).ADSCrossRefGoogle Scholar
  7. 7.
    E. Kretschmann and H. Z. Raether, Naturforsch. A 23, 2135 (1968).ADSCrossRefGoogle Scholar
  8. 8.
    M. Piliarik and J. Homola, Opt. Express 17, 16505 (2009).ADSCrossRefGoogle Scholar
  9. 9.
    B. Liedberg, C. Nylander, and I. Lundstrom, Sens. Actuators 4, 299 (1983).CrossRefGoogle Scholar
  10. 10.
    B. Liedberg, C. Nylander, and I. Lundstrom, Biosens. Bioelectron. 10, i (1995).CrossRefGoogle Scholar
  11. 11.
    R. Garabedian, C. Gonzalez, J. Richards, et al., Sens. Actuators, A 43, 202 (1994).CrossRefGoogle Scholar
  12. 12.
    E. M. Yeatman, Biosens. Bioelectron. 11, 635 (1996).CrossRefGoogle Scholar
  13. 13.
    A. B. Petrin, Opt. Spectrosc. 125, 390 (2018).ADSCrossRefGoogle Scholar
  14. 14.
    A. B. Petrin, Opt. Spectrosc. 125, 1025 (2018).ADSCrossRefGoogle Scholar
  15. 15.
    F. Goos and H. Hänchen, Ann. Phys. (N.Y.) 1, 333 (1947).ADSCrossRefGoogle Scholar
  16. 16.
    R. Renard, J. Opt. Soc. Am. 54, 1190 (1964).ADSCrossRefGoogle Scholar
  17. 17.
    X. Yin and L. Hesselink, Appl. Phys. Lett. 89, 261108 (2006).ADSCrossRefGoogle Scholar
  18. 18.
    Y. Wan, Z. Zheng, and J. Zhu, J. Opt. Soc. Am. B 28, 314 (2011).ADSCrossRefGoogle Scholar
  19. 19.
    A. D. Parks and S. E. Spence, Appl. Opt. 54, 5872 (2015).ADSCrossRefGoogle Scholar
  20. 20.
    A. B. Petrin, O. D. Vol’pyan, and A. S. Sigov, Opt. Spectrosc. 123, 798 (2017).ADSCrossRefGoogle Scholar
  21. 21.
    A. B. Petrin, O. D. Vol’pyan, and A. S. Sigov, Tech. Phys. 63, 422 (2018).CrossRefGoogle Scholar
  22. 22.
    L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge Univ. Press, Cambridge, 2006; Fizmatlit, Moscow, 2009).Google Scholar
  23. 23.
    N. J. Tao, S. Boussaad, W. L. Huang, et al., Rev. Sci. Instrum. 70, 4656 (1999).ADSCrossRefGoogle Scholar
  24. 24.
    H. Q. Zhang, S. Boussaad, and N. J. Tao, Rev. Sci. Instrum. 74, 150 (2003).ADSCrossRefGoogle Scholar
  25. 25.
    K. C. Neuman and S. M. Block, Rev. Sci. Instrum. 75, 2787 (2004).ADSCrossRefGoogle Scholar
  26. 26.
    L. Nugent-Glandorf and T. T. Perkins, Opt. Lett. 29, 2611 (2004).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Joint Institute for High Temperatures, Russian Academy of SciencesMoscowRussia

Personalised recommendations