Advertisement

Optics and Spectroscopy

, Volume 127, Issue 4, pp 634–638 | Cite as

Reinforcing of a Mirror Surface via the Deposition of a Carbon Nanostructure

  • V. I. BatshevEmail author
  • A. B. Kozlov
  • A. S. Machikhin
  • M. O. Makeev
  • A. S. Osipkov
  • M. F. Bulatov
  • I. Yu. Kinzhagulov
  • K. A. Stepanova
OPTICAL MATERIALS
  • 12 Downloads

Abstract

The problem of reinforcing the mirror surfaces of space-based astronomical optics and their protection against external factors is discussed. To solve this problem, the possibility of the deposition of diamond-like coatings onto them is considered. Using mirrors with Al and Cu coatings as an example, it has been experimentally demonstrated that the pulsed laser deposition of a carbon layer with a thickness of 30 nm onto them leads to an increase in the surface hardness by 25 and 100%, respectively. It has been established that the reinforcing coating has no effect on the shape deviations of mirrors and decrease their surface roughness. In this case, the reflection factor appreciably decreases in the visible region (400–780 nm), whereas its decrease in the infrared region (above 780 nm) is no more than 5%.

Keywords:

mirror diamond-like coating reinforcing carbon nanostructure 

Notes

CONFLICT OF INTEREST

The authors declare that they have no conflict of interest.

REFERENCES

  1. 1.
    A. Lawrence, Astronomical Measurements (Springer, Berlin, Heidelberg, 2014).CrossRefGoogle Scholar
  2. 2.
    I. Trumper et al., Adv. Opt. Photon. 10, 644 (2018).  https://doi.org/10.1364/AOP.10.000644 CrossRefGoogle Scholar
  3. 3.
    N. S. Kardashev, et al., Tr. Fiz. Inst. im. P. N. Lebedeva 228, 112 (2000).Google Scholar
  4. 4.
    K. Bewilogua and D. Hofmann, Surf. Coat. Technol. 242, 214 (2014).CrossRefGoogle Scholar
  5. 5.
    H. Macleod, Thin-Film Optical Filters, 4th ed. (CRC, Boca Raton, FL, 2010).CrossRefGoogle Scholar
  6. 6.
    N. I. Klyui, V. G. Litovchenko, A. N. Lukyanov, L. V. Neselevska, V. D. Osovskiy, O. V. Yaroschuk, and L. A. Dolgov, Ukr. Phys. J. 51, 710 (2006).Google Scholar
  7. 7.
    F. F. Sizov, N. I. Klyui, A. N. Luk’yanov, R. K. Savkina, A. B. Smirnov, and A. Z. Evmenova, Tech. Phys. Lett. 34, 377 (2008).ADSCrossRefGoogle Scholar
  8. 8.
    J. Robertson, Mater. Sci. Eng., 129 (2002).Google Scholar
  9. 9.
    Functional Micro/Nano Systems. http://fmn.bmstu.ru/technology/equipment/metrology/nanofab/.Google Scholar
  10. 10.
    V. Dubrovskii, Theory of the Formation of Epitaxial Nanostructures (Fizmatlit, Moscow, 2009) [in Russian].Google Scholar
  11. 11.
    IR-VASE User’s Manual (J. A. Woollam Co., 2006).Google Scholar
  12. 12.
    M. O. Makeev, Yu. A. Ivanov, S. A. Meshkov, A. B. Gil’man, and M. Yu. Yablokov, High Energy Chem. 45, 536 (2011).  https://doi.org/10.1134/S0018143911060129 CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • V. I. Batshev
    • 1
    • 2
    Email author
  • A. B. Kozlov
    • 1
    • 3
  • A. S. Machikhin
    • 1
  • M. O. Makeev
    • 2
  • A. S. Osipkov
    • 2
  • M. F. Bulatov
    • 1
  • I. Yu. Kinzhagulov
    • 4
  • K. A. Stepanova
    • 4
  1. 1.Scientific and Technological Center of Unique Instrumentation, Russian Academy of ScienceMoscowRussia
  2. 2.Bauman Moscow State Technical UniversityMoscowRussia
  3. 3.Polyus Stelmakh Scientific Research InstituteMoscowRussia
  4. 4.St. Petersburg National Research University of Information Technologies, Mechanics, and OpticsSt. PetersburgRussia

Personalised recommendations