Advertisement

Optics and Spectroscopy

, Volume 127, Issue 4, pp 763–768 | Cite as

Optical Penetration Depths and Fluence Distributions in Chicken Breast and Liver Tissues

  • H. ArslanEmail author
  • Y. B. Dolukan
APPLIED OPTICS
  • 17 Downloads

Abstract

The optical penetration depth is one of the important parameters needed for the calculations of light dosimetry in various medical applications like photodynamic therapy. In this study, the optical penetration depths in chicken breast and liver tissues have been measured by using the LED light sources with the wavelengths of 635 and 660 nm. Experimental results of this study have been compared with the ones from the Monte Carlo simulations in order to test the simulation toolkit. Based on the agreement between the experimental and simulated data, it is concluded that tissue optics plug-in interfacing with GAMOS architecture is a reasonable software for investigating the light distribution in biological tissues.

Keywords:

biological tissues optical penetration depth Monte Carlo simulations 

Notes

ACKNOWLEDGMENTS

This study is supported by Sakarya University Scientific Research Projects Coordination Unit (project no. 2017-09-00-013) and by TUBITAK 1005 Program (project no. 116F119).

REFERENCES

  1. 1.
    T. Dougherty, C. Gomer, B. Henderson, G. Jori, D. Kessel, and M. Korbelik, J. Natl. Cancer Inst. 90, 889 (1998).CrossRefGoogle Scholar
  2. 2.
    A. P. Castano, T. N. Demidova, and M. R. Hamblin, Photodiagn. Photodyn. Ther. 1, 279 (2004).CrossRefGoogle Scholar
  3. 3.
    G. G. Kramarenko, S. G. Hummel, S. M. Martin, and G. R. Buettner, Photochem. Photobiol. 82, 1634 (2006).CrossRefGoogle Scholar
  4. 4.
    M. Ochsner, J. Photochem. Photobiol., B 39, 1 (1997).CrossRefGoogle Scholar
  5. 5.
    H. Kato, J. Photochem. Photobiol., B 42, 96 (1998).CrossRefGoogle Scholar
  6. 6.
    K. Svanberg, D. L. Liu, I. Wang, S. Andersson-Engels, U. Stenram, and S. Svanberg, Br. J. Cancer 74, 1526 (1996).CrossRefGoogle Scholar
  7. 7.
    R. Baumgartner, R. M. Huber, H. Schulz, et al., J. Photochem. Photobiol. B 36, 169 (1996).CrossRefGoogle Scholar
  8. 8.
    R. M. Szeimies, C. Abels, C. Fritsch, et al., J. Invest. Dermatol. 105, 672 (1995).CrossRefGoogle Scholar
  9. 9.
    J. P. Tardivo, A. D. Giglio, C. S. Oliveira, et al., Photodiagn. Photodyn. Ther. 2, 175 (2005).CrossRefGoogle Scholar
  10. 10.
    H. C. Junqueira, D. Severino, L. G. Dias, et al., Phys. Chem. Chem. Phys. 4, 2320 (2002).CrossRefGoogle Scholar
  11. 11.
    L. P. Rosa, F. C. Silva, S. A. Nader, et al., Photodiagn. Photodyn. Ther. 12, 276 (2015).CrossRefGoogle Scholar
  12. 12.
    J. Yu, C. H. Hsu, C. C. Huang, and P. Y. Chang, ACS Appl. Mater. Interfaces 7, 432 (2015).CrossRefGoogle Scholar
  13. 13.
    T. C. Zhu and J. C. Finlay, Med. Phys. 35, 3127 (2008).CrossRefGoogle Scholar
  14. 14.
    S. L. Jacques, Phys. Med. Biol. 58, R37 (2013).ADSCrossRefGoogle Scholar
  15. 15.
    S. Stolik, J. A. Delgado, A. Perez, and L. Anasagasti, J. Photochem. Photobiol., B 57, 90 (2000).CrossRefGoogle Scholar
  16. 16.
    S. Xie, H. Li, and B. Li, Chin. Opt. Lett. 1, 44 (2003).ADSGoogle Scholar
  17. 17.
    A. Abdo, A. Ersen, and M. Sahin, J. Biomed. Opt. 18, 075001 (2013).CrossRefGoogle Scholar
  18. 18.
    H. Zhang, D. C. Salo, D. M. Kim, et al., J. Biomed. Opt. 21, 126006 (2016).ADSCrossRefGoogle Scholar
  19. 19.
    A. A. A. Halim, M. H. Laili, and M. Rusop, J. Telecommun. Electron. Comput. Eng. 10, 47 (2018).Google Scholar
  20. 20.
    M. Monici, A. Gnerucci, T. Falconi, et al., Muscles, Ligaments J. Tendons, 8, 222 (2018).CrossRefGoogle Scholar
  21. 21.
    J. L. Karagiannes, Z. Zhang, B. Grossweiner, and L. I. Grossweiner, Appl. Opt. 28, 2311 (1989).ADSCrossRefGoogle Scholar
  22. 22.
    W. M. Star, J. P. A. Marijnissen, and M. J. C. van Gemert, Phys. Med. Biol. 33, 437 (1988).CrossRefGoogle Scholar
  23. 23.
    B. C. Wilson and G. Adam, Med. Phys. 10, 824 (1983).CrossRefGoogle Scholar
  24. 24.
    H. Arslan, Y. B. Dolugan, and A. N. Ay, Sakarya Univ. J. Sci. 22, 1095 (2018).Google Scholar
  25. 25.
    S. Agostinelli, J. Allison, K. Amako, et al., Nucl. Instrum. Methods Phys. Res., Sect. A 506, 250 (2003).Google Scholar
  26. 26.
    P. Arce, P. Rato, M. Canadas, and J. I. Lagares, in Proceedings of the Nuclear Science Symposium Conference NSS'08 (IEEE, 2008), p. 3162.Google Scholar
  27. 27.
    A. K. Glaser, S. C. Kanick, R. Zhang, et al., Biomed. Opt. Express 4, 741 (2013).CrossRefGoogle Scholar
  28. 28.
    H. Arslan and M. Bektasoglu, Nucl. Instrum. Methods Phys. Res., Sect. A 778, 1 (2015).Google Scholar
  29. 29.
    H. Arslan, Nucl. Sci. Tech. 30, 96 (2019).CrossRefGoogle Scholar
  30. 30.
    G. Marquez, L. V. Wang, S. Lin, et al., Appl. Opt. 37, 798 (1998).ADSCrossRefGoogle Scholar
  31. 31.
    O. Hamdy, J. El-Azab, T. A. Al-Saeed, et al., Materials (Basel) 10, 1104 (2017).ADSCrossRefGoogle Scholar
  32. 32.
    F. P. Bolin, L. E. Preuss, R. C. Taylor, and R. J. Ference, Appl. Opt. 28, 2297 (1989).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Department of Electrical and Electronics Engineering, Faculty of Technology, Sakarya University of Applied SciencesSakaryaTurkey

Personalised recommendations