Optics and Spectroscopy

, Volume 127, Issue 4, pp 587–590 | Cite as

Overtone Raman Scattering in Lithium Tantalate Single Crystals

  • S. D. Abdurakhmonov
  • V. S. GorelikEmail author


Overtone bands in the spectral range of 1300−1920 cm–1 have been found in Raman scattering spectrum of lithium tantalate single crystals. The Raman spectra were recorded in the 180° scattering geometry. The intensity of overtone transitions differs for different samples and, in some cases, is comparable with the Raman scattering intensity at the fundamental modes of a lithium tantalate single crystal.


Raman scattering overtone lithium tantalate optical modes spectrum 



This study was supported by the Russian Science Foundation, project no. 19-12-00242.


The authors declare that they have no conflict of interest.


  1. 1.
    J. Imbrock, S. Wevering, K. Buse, and E. Kratzig, J. Opt. Soc. Am. B 16, 1392 (1999).ADSCrossRefGoogle Scholar
  2. 2.
    T. Hatanaka, K. Nakamura, T. Taniuchi, H. Ito, Y. Furukawa, and K. Kitamura, Opt. Lett. 25, 651 (2000).ADSCrossRefGoogle Scholar
  3. 3.
    I. P. Kaminow and W. D. Johnston, Phys. Rev. 160, 519 (1967).ADSCrossRefGoogle Scholar
  4. 4.
    A. F. Penna, A. Chaves, P. da R. Andrade, and S. P. S. Porto, Phys. Rev. B 13, 4907 (1976).ADSCrossRefGoogle Scholar
  5. 5.
    R. Constantine, Phys. Rev. B 38, 10007 (1988).CrossRefGoogle Scholar
  6. 6.
    I. Tomeno and S. Matsumura, Phys. Rev. B 38, 606 (1988).ADSCrossRefGoogle Scholar
  7. 7.
    A. Hushur, S. Gvasaliya, B. Roessli, S. Lushnikov, and S. Kojima, Phys. Rev. B 76, 064104 (2007).ADSCrossRefGoogle Scholar
  8. 8.
    K. M. Rabe, C. H. Ahn, and J.-M. Triscone, Physics of Ferroelectrics, a Modern Perspective,Topics in Applied Physics (Springer, Berlin, Heidelberg, 2007).Google Scholar
  9. 9.
    Y. Xu, Ferroelectric Materials and Their Applications (Elsevier, North Holland, Amsterdam, 1991).Google Scholar
  10. 10.
    S. Sanna, S. Neufeld, M. Rusing, G. Berth, A. Zrenner, and W. G. Schmidt, Phys. Rev. B 91, 224302 (2015).ADSCrossRefGoogle Scholar
  11. 11.
    W. D. Johnston, Jr. and J. P. Kaminov, Phys. Rev. 168, 1045 (1968).ADSCrossRefGoogle Scholar
  12. 12.
    V. S. Gorelik, Izv. Akad. Nauk, Fiz. 49, 282 (1985).Google Scholar
  13. 13.
    V. S. Gorelik, P. P. Sverbil, A. I. Vodchits, and Yu. P. Voinov, Bull. Russ. Acad. Sci.: Phys. 82, 257 (2018).CrossRefGoogle Scholar
  14. 14.
    V. S. Gorelik, S. D. Tochilin, and M. M. Sushchinsky, J. Mol. Struct. 143, 83 (1986).ADSCrossRefGoogle Scholar
  15. 15.
    L. Shuo, L. Zhanlong, W. Shenghan, G. Shuqin, S. Chenglin, and L. Zuowei, Mater. Res. Bull. 72, 1 (2015).CrossRefGoogle Scholar
  16. 16.
    T. Liu, S. Xu, Z. Li, M. Wang, and C. Sun, Spectrochim. Acta, Part A 131, 153 (2014).ADSCrossRefGoogle Scholar
  17. 17.
    J. H. Eric, Y. Yuan, K. Lucas, C. Wei, F. Shiang, B. Mario, and K. Efthimios, ACS Nano 10, 2803 (2016).CrossRefGoogle Scholar
  18. 18.
    M. Friedrich, A. Schindlmayr, W. G. Schmidt, and S. Sanna, Phys. Status Solidi B 253, 683 (2016).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Lebedev Physical Institute, Russian Academy of SciencesMoscowRussia
  2. 2.Bauman Moscow State Technical UniversityMoscowRussia

Personalised recommendations