Optics and Spectroscopy

, Volume 127, Issue 1, pp 113–120 | Cite as

Destruction of Doped Lithium Tetraborate under Exposure to Ionizing and Laser Radiation

  • Yu. G. VainerEmail author
  • N. Yu. Vereshchagina
  • M. I. Danilkin
  • V. M. Korshunov
  • Yu. A. Repeev
  • A. S. Selyukov


The results of the study of the degradation of thermoluminescent materials Li2B4O7:Be + Mn and Li2B4O7:Zn + Mn under the effect of radiation (pulsed electron beam) and laser radiation are presented. As a result of exposure to high doses of radiation, the structure of the samples under study partially acquires an amorphous character, while the effect of radiation exposure is manifested in the optical properties in the appearance of green luminescence due to manganese centers in the tetrahedral environment. With subsequent irradiation with a laser at a wavelength of 350 nm, luminescence centers decay due to photochemical oxidation of manganese by the reaction of Mn2+ → Mn3+. It is shown that Li2B4O7:Be + Mn has a lower radiation resistance than Li2B4O7:Zn + Mn.


lithium tetraborate thermoluminescence radiation amorphization of the crystal structure laser degradation of luminescence centers 



A. Selyukov is grateful for the support of the Russian Foundation for Basic Research within the framework of project no. 18-02-00811 A. The work is supported partly within the State Assignment of the Institute of Spectroscopy of the Russian Academy of Sciences and partly by the Russian Foundation for Basic Research, project no. 18-02-00811 A.


The authors declare that they have no conflict of interest.


  1. 1.
    T. Y. Kwon, J. J. Ju, J. W. Cha, J. N. Kim, and S. I. Yun, Mater. Lett. 20, 211 (1994). CrossRefGoogle Scholar
  2. 2.
    A. A. Kaminskii, L. Bohatý, P. Becker, J. Liebertz, H. J. Eichler, and H. Rhee, Laser Phys. Lett. 3, 519 (2006). ADSCrossRefGoogle Scholar
  3. 3.
    R. Komatsu, T. Sugawara, K. Sassa, N. Sarukura, Z. Liu, S. Izumida, Y. Segawa, S. Uda, T. Fukuda, and K. Yamanouchi, Appl. Phys. Lett. 70, 3492 (1997). ADSCrossRefGoogle Scholar
  4. 4.
    V. Petrov, F. Rotermund, F. Noack, R. Komatsu, T. Sugawara, and S. Uda, J. Appl. Phys. 84, 5887 (1998). ADSCrossRefGoogle Scholar
  5. 5.
    G. Kitis, C. Furetta, M. Prokić, and V. Prokić, J. Phys. D: Appl. Phys. 33, 1252 (2000). ADSCrossRefGoogle Scholar
  6. 6.
    D. Podgórska, S. M. Kaczmarek, W. Drozdowski, M. Wabia, M. Kwaśny, S. Warchoł, and V. M. Rizak, Mol. Phys. Rep. 39, 199 (2004).Google Scholar
  7. 7.
    V. M. Holovey, V. I. Sidey, V. I. Lyamayev, and M. M. Birov, J. Phys. Chem. Solids 68, 1305 (2007). ADSCrossRefGoogle Scholar
  8. 8.
    A. Kelemen, M. Ignatovych, V. Holovey, T. Vidóczy, and P. Baranyai, Radiat. Phys. Chem. 76, 1531 (2007). ADSCrossRefGoogle Scholar
  9. 9.
    V. M. Holovey, V. I. Sidey, V. I. Lyamayev, and M. M. Birov, J. Phys. Chem. Solids 68, 1305 (2007). ADSCrossRefGoogle Scholar
  10. 10.
    M. Danilkin, I. Jaek, M. Kerikmäe, A. Lust, H. Mändar, L. Pung, A. Ratas, V. Seeman, S. Klimonsky, and V. Kuznetsov, Radiat. Meas. 45, 562 (2010). CrossRefGoogle Scholar
  11. 11.
    S. Kar, S. Verma, and K. S. Bartwal, Phys. B (Amsterdam, Neth.) 405, 4299 (2010).
  12. 12.
    V. M. Holovey, K. P. Popovich, D. B. Goyer, V. M. Krasylynets, and A. V. Gomonnai, Radiat. Eff. Defects Solids 166, 522 (2011). ADSCrossRefGoogle Scholar
  13. 13.
    O. Annalakshmi, M. T. Jose, and G. Amarendra, Radiat. Meas. 46, 669 (2011). CrossRefGoogle Scholar
  14. 14.
    M. Kayhan and A. Yilmaz, J. Alloys Compd. 509, 7819 (2011). CrossRefGoogle Scholar
  15. 15.
    M. Ignatovych, M. Fasoli, and A. Kelemen, Radiat. Phys. Chem. 81, 1528 (2012). ADSCrossRefGoogle Scholar
  16. 16.
    A. Ozdemir, Z. Yegingil, N. Nur, K. Kurt, T. Tuken, T. Depci, G. Tansug, V. Altunal, V. Guckan, G. Sigircik, Y. Yu, M. Karatasli, and Y. Dolek, J. Lumin. 173, 149 (2016). CrossRefGoogle Scholar
  17. 17.
    A. Ratas, M. Danilkin, M. Kerikmäe, A. Lust, H. Mändar, V. Seeman, and G. Slavin, Proc. Est. Acad. Sci. 61, 279 (2012). CrossRefGoogle Scholar
  18. 18.
    V. Nagirnyi, E. Aleksanyan, G. Corradi, M. Danilkin, E. Feldbach, M. Kerikmäe, A. Kotlov, A. Lust, K. Polgár, A. Ratas, I. Romet, and V. Seeman, Radiat. Meas. 56, 192 (2013). CrossRefGoogle Scholar
  19. 19.
    T. D. Kelly, L. Kong, D. A. Buchanan, A. T. Brant, J. C. Petrosky, J. W. McClory, V. T. Adamiv, Y. V. Burak, and P. A. Dowben, Phys. Status Solidi B 250, 1376 (2013). ADSCrossRefGoogle Scholar
  20. 20.
    C. Dugan, R. L. Hengehold, S. R. McHale, J. A. Colón Santana, J. W. McClory, V. T. Adamiv, Ya. V. Burak, Ya. B. Losovyj, and P. A. Dowben, Appl. Phys. Lett. 102, 161602 (2013). ADSCrossRefGoogle Scholar
  21. 21.
    I. Romet, M. Buryi, G. Corradi, E. Feldbach, V. Laguta, É. Tichy-Rács, and V. Nagirnyi, Opt. Mater. 70, 184 (2017). ADSCrossRefGoogle Scholar
  22. 22.
    A. T. Brant, B. E. Kananan, M. K. Murari, J. W. McClory, J. C. Petrosky, V. T. Adamiv, Ya. V. Burak, P. A. Dowben, and L. E. Halliburton, J. Appl. Phys. 110, 093719 (2011). ADSCrossRefGoogle Scholar
  23. 23.
    A. T. Brant, D. A. Buchanan, J. W. McClory, V. T. Adamiv, Ya. V. Burak, L. E. Halliburton, and N. C. Giles, J. Lumin. 153, 79 (2014). CrossRefGoogle Scholar
  24. 24.
    D. A. Buchanan, M. S. Holston, A. T. Brant, J. W. McClory, V. T. Adamiv, Ya. V. Burak, and L. E. Halliburton, J. Phys. Chem. Solids 75, 1347 (2014). ADSCrossRefGoogle Scholar
  25. 25.
    G. D. Patra, S. G. Singh, A. K. Singh, M. Tyagi, D. G. Desai, B. Tiwari, S. Sen, and S. C. Gadkari, J. Lumin. 157, 333 (2015). CrossRefGoogle Scholar
  26. 26.
    G. D. Patra, S. G. Singh, B. Tiwari, A. K. Singh, D. G. Desai, M. Tyagi, S. Sen, and S. C. Gadkari, Radiat. Meas. 88, 14 (2016). CrossRefGoogle Scholar
  27. 27.
    I. Romet, E. Aleksanyan, M. G. Brik, G. Corradi, A. Kotlov, V. Nagirnyi, and K. Polgár, J. Lumin. 177, 9 (2016). CrossRefGoogle Scholar
  28. 28.
    M. G. Celik, A. Yilmaz, and A. N. Yazici, Radiat. Meas. 102, 16 (2017). CrossRefGoogle Scholar
  29. 29.
    M. Prokić, Radiat. Meas. 33, 393 (2001). CrossRefGoogle Scholar
  30. 30.
    N. Can, T. Karali, P. D. Townsend, and F. Yıldız, J. Phys. D: Appl. Phys. 39, 2038 (2006). ADSCrossRefGoogle Scholar
  31. 31.
    G. Corradi, A. Watterich, K. Polgár, V. Nagirnyi, A. Hofstaetter, L. G. Rakitina, and M. Meyer, Phys. Status Solidi C 4, 1276 (2007). ADSCrossRefGoogle Scholar
  32. 32.
    G. Corradi, V. Nagirnyi, A. Kotlov, A. Watterich, M. Kirm, K. Polgár, A. Hofstaetter, and M. Meyer, J. Phys.: Condens. Matter 20, 025216 (2008). ADSGoogle Scholar
  33. 33.
    G. Corradi, V. Nagirnyi, A. Watterich, A. Kotlov, and K. Polgár, J. Phys.: Conf. Ser. 249, 012008 (2010). Google Scholar
  34. 34.
    B. T. Huy, V. X. Quang, and M. Ishii, J. Lumin. 130, 2142 (2010). CrossRefGoogle Scholar
  35. 35.
    A. Kelemen, D. Mesterházy, M. Ignatovych, and V. Holovey, Radiat. Phys. Chem. 81, 1533 (2012). ADSCrossRefGoogle Scholar
  36. 36.
    A. T. Brant, D. A. Buchanan, J. W. McClory, P. A. Dowben, V. T. Adamiv, Ya. V. Burak, and L. E. Halliburton, J. Lumin. 139, 125 (2013). CrossRefGoogle Scholar
  37. 37.
    T. Aydın, H. Demirtas, and S. Aydın, Radiat. Meas. 58, 24 (2013). CrossRefGoogle Scholar
  38. 38.
    G. I. Malovichko, L. E. Vitruk, N. Yu. Yurchenko, Ya. V. Burak, V. G. Grachev, A. O. Matkovskii, and D. Yu. Sugak, Sov. Phys. Solid State 34, 272 (1992).Google Scholar
  39. 39.
    A. O. Matkovskii, D. Yu. Sugak, Ya. V. Burak, G. I. Malovichko, and V. G. Grachov, Radiat. Eff. Defects Solids 132, 371 (1994). ADSCrossRefGoogle Scholar
  40. 40.
    I. N. Ogorodnikov, V. Y. Yakovlev, A. V. Kruzhalov, and L. I. Isaenko, Phys. Solid State 44, 1085 (2002). ADSCrossRefGoogle Scholar
  41. 41.
    Ya. V. Burak, B. V. Padlyak, and V. M. Shevel, Radiat. Eff. Defects Solids. 157, 1101 (2002). ADSCrossRefGoogle Scholar
  42. 42.
    Ya. V. Burak, B. V. Padlyak, and V. M. Shevel, Nucl. Instrum. Methods Phys. Res., Sect. B 191, 633 (2002). Google Scholar
  43. 43.
    M. W. Swinney, J. W. McClory, J. C. Petrosky, Sh. Yang, A. T. Brant, V. T. Adamiv, Ya. V. Burak, P. A. Dowben, and L. E. Halliburton, J. Appl. Phys. 107, 113715 (2010). ADSCrossRefGoogle Scholar
  44. 44.
    I. N. Ogorodnikov, N. E. Poryvay, and V. A. Pustovarov, IOP Conf. Ser.: Mater. Sci. Eng. 15, 012016 (2010).
  45. 45.
    M. I. Danilkin, Yu. A. Koksharov, I. Romet, V. O. Seeman, N. Yu. Vereschagina, A. I. Zubov, and A. S. Selyukov, Radiat. Meas. 126, 106134 (2019). CrossRefGoogle Scholar
  46. 46.
    N. Yu. Vereschagina, M. I. Danilkin, M. A. Kazaryan, D. I. Ozol, E. P. Sheshin, and D. A. Spassky, Proc. SPIE 10614, 106141F (2018). Google Scholar
  47. 47.
    N. Yu. Vereshchagina and M. I. Danilkin, RF Patent No. 2660866 C1 (2018).Google Scholar
  48. 48.
    V. N. Afanas’ev, V. B. Bychkov, V. D. Lartsev, V. P. Pudov, V. I. Solomonov, S. A. Shunailov, V. V. Generalova, and A. A. Gromov, Instrum. Exp. Tech. 48, 641 (2005). CrossRefGoogle Scholar
  49. 49.
    M. Kerikmäe, M. Danilkin, A. Lust, V. Nagirnyi, L. Pung, A. Ratas, I. Romet, and V. Seeman, Radiat. Meas. 56, 147 (2013). CrossRefGoogle Scholar
  50. 50.
    H. Lin, R. Zhang, D. Chen, Y. Yu, A. Yang, and Y. Wang, J. Mater. Chem. C 1, 1804 (2013). CrossRefGoogle Scholar
  51. 51.
    L. Shi, Y. Huang, and H. J. Seo, J. Phys. Chem. A 114, 6927 (2010). CrossRefGoogle Scholar
  52. 52.
    L. Szōllösy, T. Szōrényi, and K. Szanka, Acta Phys. Chem. Szeged 21, 119 (1975).Google Scholar
  53. 53.
    L. Szōllösy, T. Szōrényi, and K. Szanka, Acta Phys. Chem. Szeged 20, 299 (1974).Google Scholar
  54. 54.
    V. D. Shcherbakov, Uch. Zap. Kazan. Univ., Ser. Fiz.-Mat. Nauki 157, 172 (2015).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • Yu. G. Vainer
    • 1
    • 2
    Email author
  • N. Yu. Vereshchagina
    • 3
  • M. I. Danilkin
    • 3
  • V. M. Korshunov
    • 3
    • 4
  • Yu. A. Repeev
    • 1
  • A. S. Selyukov
    • 3
    • 5
  1. 1.Institute of Spectroscopy, Russian Academy of SciencesTroitskMoscowRussia
  2. 2.National Research University Higher School of EconomicsMoscowRussia
  3. 3.Lebedev Physical Institute, Russian Academy of SciencesMoscowRussia
  4. 4.Bauman Moscow State Technical UniversityMoscowRussia
  5. 5.Moscow Institute of Physics and TechnologyDolgoprudnyiRussia

Personalised recommendations