Advertisement

Optics and Spectroscopy

, Volume 127, Issue 1, pp 113–120 | Cite as

Destruction of Doped Lithium Tetraborate under Exposure to Ionizing and Laser Radiation

  • Yu. G. VainerEmail author
  • N. Yu. Vereshchagina
  • M. I. Danilkin
  • V. M. Korshunov
  • Yu. A. Repeev
  • A. S. Selyukov
OPTICAL MATERIALS
  • 5 Downloads

Abstract

The results of the study of the degradation of thermoluminescent materials Li2B4O7:Be + Mn and Li2B4O7:Zn + Mn under the effect of radiation (pulsed electron beam) and laser radiation are presented. As a result of exposure to high doses of radiation, the structure of the samples under study partially acquires an amorphous character, while the effect of radiation exposure is manifested in the optical properties in the appearance of green luminescence due to manganese centers in the tetrahedral environment. With subsequent irradiation with a laser at a wavelength of 350 nm, luminescence centers decay due to photochemical oxidation of manganese by the reaction of Mn2+ → Mn3+. It is shown that Li2B4O7:Be + Mn has a lower radiation resistance than Li2B4O7:Zn + Mn.

Keywords:

lithium tetraborate thermoluminescence radiation amorphization of the crystal structure laser degradation of luminescence centers 

Notes

FUNDING

A. Selyukov is grateful for the support of the Russian Foundation for Basic Research within the framework of project no. 18-02-00811 A. The work is supported partly within the State Assignment of the Institute of Spectroscopy of the Russian Academy of Sciences and partly by the Russian Foundation for Basic Research, project no. 18-02-00811 A.

CONFLICT OF INTEREST

The authors declare that they have no conflict of interest.

REFERENCES

  1. 1.
    T. Y. Kwon, J. J. Ju, J. W. Cha, J. N. Kim, and S. I. Yun, Mater. Lett. 20, 211 (1994).  https://doi.org/10.1016/0167-577X(94)90089-2 CrossRefGoogle Scholar
  2. 2.
    A. A. Kaminskii, L. Bohatý, P. Becker, J. Liebertz, H. J. Eichler, and H. Rhee, Laser Phys. Lett. 3, 519 (2006).  https://doi.org/10.1002/lapl.200610053 ADSCrossRefGoogle Scholar
  3. 3.
    R. Komatsu, T. Sugawara, K. Sassa, N. Sarukura, Z. Liu, S. Izumida, Y. Segawa, S. Uda, T. Fukuda, and K. Yamanouchi, Appl. Phys. Lett. 70, 3492 (1997).  https://doi.org/10.1063/1.119210 ADSCrossRefGoogle Scholar
  4. 4.
    V. Petrov, F. Rotermund, F. Noack, R. Komatsu, T. Sugawara, and S. Uda, J. Appl. Phys. 84, 5887 (1998). https://doi.org/10.1063/1.368904 ADSCrossRefGoogle Scholar
  5. 5.
    G. Kitis, C. Furetta, M. Prokić, and V. Prokić, J. Phys. D: Appl. Phys. 33, 1252 (2000).  https://doi.org/10.1088/0022-3727/33/11/302 ADSCrossRefGoogle Scholar
  6. 6.
    D. Podgórska, S. M. Kaczmarek, W. Drozdowski, M. Wabia, M. Kwaśny, S. Warchoł, and V. M. Rizak, Mol. Phys. Rep. 39, 199 (2004).Google Scholar
  7. 7.
    V. M. Holovey, V. I. Sidey, V. I. Lyamayev, and M. M. Birov, J. Phys. Chem. Solids 68, 1305 (2007).  https://doi.org/10.1016/j.jpcs.2007.02.005 ADSCrossRefGoogle Scholar
  8. 8.
    A. Kelemen, M. Ignatovych, V. Holovey, T. Vidóczy, and P. Baranyai, Radiat. Phys. Chem. 76, 1531 (2007).  https://doi.org/10.1016/j.radphyschem.2007.02.067 ADSCrossRefGoogle Scholar
  9. 9.
    V. M. Holovey, V. I. Sidey, V. I. Lyamayev, and M. M. Birov, J. Phys. Chem. Solids 68, 1305 (2007).  https://doi.org/10.1016/j.jpcs.2007.02.005 ADSCrossRefGoogle Scholar
  10. 10.
    M. Danilkin, I. Jaek, M. Kerikmäe, A. Lust, H. Mändar, L. Pung, A. Ratas, V. Seeman, S. Klimonsky, and V. Kuznetsov, Radiat. Meas. 45, 562 (2010).  https://doi.org/10.1016/j.radmeas.2010.01.045 CrossRefGoogle Scholar
  11. 11.
    S. Kar, S. Verma, and K. S. Bartwal, Phys. B (Amsterdam, Neth.) 405, 4299 (2010).  https://doi.org/10.1016/j.physb.2010.07.030
  12. 12.
    V. M. Holovey, K. P. Popovich, D. B. Goyer, V. M. Krasylynets, and A. V. Gomonnai, Radiat. Eff. Defects Solids 166, 522 (2011).  https://doi.org/10.1080/10420150.2011.559235 ADSCrossRefGoogle Scholar
  13. 13.
    O. Annalakshmi, M. T. Jose, and G. Amarendra, Radiat. Meas. 46, 669 (2011).  https://doi.org/10.1016/j.radmeas.2011.06.016 CrossRefGoogle Scholar
  14. 14.
    M. Kayhan and A. Yilmaz, J. Alloys Compd. 509, 7819 (2011).  https://doi.org/10.1016/j.jallcom.2011.04.137 CrossRefGoogle Scholar
  15. 15.
    M. Ignatovych, M. Fasoli, and A. Kelemen, Radiat. Phys. Chem. 81, 1528 (2012).  https://doi.org/10.1016/j.radphyschem.2012.01.042 ADSCrossRefGoogle Scholar
  16. 16.
    A. Ozdemir, Z. Yegingil, N. Nur, K. Kurt, T. Tuken, T. Depci, G. Tansug, V. Altunal, V. Guckan, G. Sigircik, Y. Yu, M. Karatasli, and Y. Dolek, J. Lumin. 173, 149 (2016).  https://doi.org/10.1016/j.jlumin.2016.01.013 CrossRefGoogle Scholar
  17. 17.
    A. Ratas, M. Danilkin, M. Kerikmäe, A. Lust, H. Mändar, V. Seeman, and G. Slavin, Proc. Est. Acad. Sci. 61, 279 (2012).  https://doi.org/10.3176/proc.2012.4.03 CrossRefGoogle Scholar
  18. 18.
    V. Nagirnyi, E. Aleksanyan, G. Corradi, M. Danilkin, E. Feldbach, M. Kerikmäe, A. Kotlov, A. Lust, K. Polgár, A. Ratas, I. Romet, and V. Seeman, Radiat. Meas. 56, 192 (2013).  https://doi.org/10.1016/j.radmeas.2013.02.005 CrossRefGoogle Scholar
  19. 19.
    T. D. Kelly, L. Kong, D. A. Buchanan, A. T. Brant, J. C. Petrosky, J. W. McClory, V. T. Adamiv, Y. V. Burak, and P. A. Dowben, Phys. Status Solidi B 250, 1376 (2013).  https://doi.org/10.1002/pssb.201349013 ADSCrossRefGoogle Scholar
  20. 20.
    C. Dugan, R. L. Hengehold, S. R. McHale, J. A. Colón Santana, J. W. McClory, V. T. Adamiv, Ya. V. Burak, Ya. B. Losovyj, and P. A. Dowben, Appl. Phys. Lett. 102, 161602 (2013).  https://doi.org/10.1063/1.4802760 ADSCrossRefGoogle Scholar
  21. 21.
    I. Romet, M. Buryi, G. Corradi, E. Feldbach, V. Laguta, É. Tichy-Rács, and V. Nagirnyi, Opt. Mater. 70, 184 (2017).  https://doi.org/10.1016/j.optmat.2017.05.032 ADSCrossRefGoogle Scholar
  22. 22.
    A. T. Brant, B. E. Kananan, M. K. Murari, J. W. McClory, J. C. Petrosky, V. T. Adamiv, Ya. V. Burak, P. A. Dowben, and L. E. Halliburton, J. Appl. Phys. 110, 093719 (2011).  https://doi.org/10.1063/1.3658264 ADSCrossRefGoogle Scholar
  23. 23.
    A. T. Brant, D. A. Buchanan, J. W. McClory, V. T. Adamiv, Ya. V. Burak, L. E. Halliburton, and N. C. Giles, J. Lumin. 153, 79 (2014).  https://doi.org/10.1016/j.jlumin.2014.03.008 CrossRefGoogle Scholar
  24. 24.
    D. A. Buchanan, M. S. Holston, A. T. Brant, J. W. McClory, V. T. Adamiv, Ya. V. Burak, and L. E. Halliburton, J. Phys. Chem. Solids 75, 1347 (2014).  https://doi.org/10.1016/j.jpcs.2014.07.014 ADSCrossRefGoogle Scholar
  25. 25.
    G. D. Patra, S. G. Singh, A. K. Singh, M. Tyagi, D. G. Desai, B. Tiwari, S. Sen, and S. C. Gadkari, J. Lumin. 157, 333 (2015).  https://doi.org/10.1016/j.jlumin.2014.09.017 CrossRefGoogle Scholar
  26. 26.
    G. D. Patra, S. G. Singh, B. Tiwari, A. K. Singh, D. G. Desai, M. Tyagi, S. Sen, and S. C. Gadkari, Radiat. Meas. 88, 14 (2016).  https://doi.org/10.1016/j.radmeas.2016.03.002 CrossRefGoogle Scholar
  27. 27.
    I. Romet, E. Aleksanyan, M. G. Brik, G. Corradi, A. Kotlov, V. Nagirnyi, and K. Polgár, J. Lumin. 177, 9 (2016).  https://doi.org/10.1016/j.jlumin.2016.04.014 CrossRefGoogle Scholar
  28. 28.
    M. G. Celik, A. Yilmaz, and A. N. Yazici, Radiat. Meas. 102, 16 (2017).  https://doi.org/10.1016/j.radmeas.2017.06.002 CrossRefGoogle Scholar
  29. 29.
    M. Prokić, Radiat. Meas. 33, 393 (2001).  https://doi.org/10.1016/S1350-4487(01)00039-7 CrossRefGoogle Scholar
  30. 30.
    N. Can, T. Karali, P. D. Townsend, and F. Yıldız, J. Phys. D: Appl. Phys. 39, 2038 (2006).  https://doi.org/10.1088/0022-3727/39/10/009 ADSCrossRefGoogle Scholar
  31. 31.
    G. Corradi, A. Watterich, K. Polgár, V. Nagirnyi, A. Hofstaetter, L. G. Rakitina, and M. Meyer, Phys. Status Solidi C 4, 1276 (2007).  https://doi.org/10.1002/pssc.200673756 ADSCrossRefGoogle Scholar
  32. 32.
    G. Corradi, V. Nagirnyi, A. Kotlov, A. Watterich, M. Kirm, K. Polgár, A. Hofstaetter, and M. Meyer, J. Phys.: Condens. Matter 20, 025216 (2008).  https://doi.org/10.1088/0953-8984/20/02/025216 ADSGoogle Scholar
  33. 33.
    G. Corradi, V. Nagirnyi, A. Watterich, A. Kotlov, and K. Polgár, J. Phys.: Conf. Ser. 249, 012008 (2010).  https://doi.org/10.1088/1742-6596/249/1/012008 Google Scholar
  34. 34.
    B. T. Huy, V. X. Quang, and M. Ishii, J. Lumin. 130, 2142 (2010).  https://doi.org/10.1016/j.jlumin.2010.06.008 CrossRefGoogle Scholar
  35. 35.
    A. Kelemen, D. Mesterházy, M. Ignatovych, and V. Holovey, Radiat. Phys. Chem. 81, 1533 (2012).  https://doi.org/10.1016/j.radphyschem.2012.01.041 ADSCrossRefGoogle Scholar
  36. 36.
    A. T. Brant, D. A. Buchanan, J. W. McClory, P. A. Dowben, V. T. Adamiv, Ya. V. Burak, and L. E. Halliburton, J. Lumin. 139, 125 (2013).  https://doi.org/10.1016/j.jlumin.2013.02.023 CrossRefGoogle Scholar
  37. 37.
    T. Aydın, H. Demirtas, and S. Aydın, Radiat. Meas. 58, 24 (2013).  https://doi.org/10.1016/j.radmeas.2013.07.010 CrossRefGoogle Scholar
  38. 38.
    G. I. Malovichko, L. E. Vitruk, N. Yu. Yurchenko, Ya. V. Burak, V. G. Grachev, A. O. Matkovskii, and D. Yu. Sugak, Sov. Phys. Solid State 34, 272 (1992).Google Scholar
  39. 39.
    A. O. Matkovskii, D. Yu. Sugak, Ya. V. Burak, G. I. Malovichko, and V. G. Grachov, Radiat. Eff. Defects Solids 132, 371 (1994).  https://doi.org/10.1080/10420159408219989 ADSCrossRefGoogle Scholar
  40. 40.
    I. N. Ogorodnikov, V. Y. Yakovlev, A. V. Kruzhalov, and L. I. Isaenko, Phys. Solid State 44, 1085 (2002).  https://doi.org/10.1134/1.1485012 ADSCrossRefGoogle Scholar
  41. 41.
    Ya. V. Burak, B. V. Padlyak, and V. M. Shevel, Radiat. Eff. Defects Solids. 157, 1101 (2002).  https://doi.org/10.1080/10420150215791 ADSCrossRefGoogle Scholar
  42. 42.
    Ya. V. Burak, B. V. Padlyak, and V. M. Shevel, Nucl. Instrum. Methods Phys. Res., Sect. B 191, 633 (2002).  https://doi.org/10.1016/S0168-583X(02)00624-9 Google Scholar
  43. 43.
    M. W. Swinney, J. W. McClory, J. C. Petrosky, Sh. Yang, A. T. Brant, V. T. Adamiv, Ya. V. Burak, P. A. Dowben, and L. E. Halliburton, J. Appl. Phys. 107, 113715 (2010).  https://doi.org/10.1063/1.3392802 ADSCrossRefGoogle Scholar
  44. 44.
    I. N. Ogorodnikov, N. E. Poryvay, and V. A. Pustovarov, IOP Conf. Ser.: Mater. Sci. Eng. 15, 012016 (2010).  https://doi.org/10.1088/1757-899X/15/1/012016
  45. 45.
    M. I. Danilkin, Yu. A. Koksharov, I. Romet, V. O. Seeman, N. Yu. Vereschagina, A. I. Zubov, and A. S. Selyukov, Radiat. Meas. 126, 106134 (2019). https://doi.org/10.1016/j.radmeas.2019.106134 CrossRefGoogle Scholar
  46. 46.
    N. Yu. Vereschagina, M. I. Danilkin, M. A. Kazaryan, D. I. Ozol, E. P. Sheshin, and D. A. Spassky, Proc. SPIE 10614, 106141F (2018).  https://doi.org/10.1117/12.2303579 Google Scholar
  47. 47.
    N. Yu. Vereshchagina and M. I. Danilkin, RF Patent No. 2660866 C1 (2018).Google Scholar
  48. 48.
    V. N. Afanas’ev, V. B. Bychkov, V. D. Lartsev, V. P. Pudov, V. I. Solomonov, S. A. Shunailov, V. V. Generalova, and A. A. Gromov, Instrum. Exp. Tech. 48, 641 (2005).  https://doi.org/10.1007/s10786-005-0114-y CrossRefGoogle Scholar
  49. 49.
    M. Kerikmäe, M. Danilkin, A. Lust, V. Nagirnyi, L. Pung, A. Ratas, I. Romet, and V. Seeman, Radiat. Meas. 56, 147 (2013).  https://doi.org/10.1016/j.radmeas.2013.02.002 CrossRefGoogle Scholar
  50. 50.
    H. Lin, R. Zhang, D. Chen, Y. Yu, A. Yang, and Y. Wang, J. Mater. Chem. C 1, 1804 (2013).  https://doi.org/10.1039/C2TC00658H CrossRefGoogle Scholar
  51. 51.
    L. Shi, Y. Huang, and H. J. Seo, J. Phys. Chem. A 114, 6927 (2010).  https://doi.org/10.1021/jp101772z CrossRefGoogle Scholar
  52. 52.
    L. Szōllösy, T. Szōrényi, and K. Szanka, Acta Phys. Chem. Szeged 21, 119 (1975).Google Scholar
  53. 53.
    L. Szōllösy, T. Szōrényi, and K. Szanka, Acta Phys. Chem. Szeged 20, 299 (1974).Google Scholar
  54. 54.
    V. D. Shcherbakov, Uch. Zap. Kazan. Univ., Ser. Fiz.-Mat. Nauki 157, 172 (2015).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • Yu. G. Vainer
    • 1
    • 2
    Email author
  • N. Yu. Vereshchagina
    • 3
  • M. I. Danilkin
    • 3
  • V. M. Korshunov
    • 3
    • 4
  • Yu. A. Repeev
    • 1
  • A. S. Selyukov
    • 3
    • 5
  1. 1.Institute of Spectroscopy, Russian Academy of SciencesTroitskMoscowRussia
  2. 2.National Research University Higher School of EconomicsMoscowRussia
  3. 3.Lebedev Physical Institute, Russian Academy of SciencesMoscowRussia
  4. 4.Bauman Moscow State Technical UniversityMoscowRussia
  5. 5.Moscow Institute of Physics and TechnologyDolgoprudnyiRussia

Personalised recommendations