Optics and Spectroscopy

, Volume 126, Issue 3, pp 191–194 | Cite as

Optical Properties of Single-Crystal Germanium in the THz Range

  • I. A. Kaplunov
  • A. I. Kolesnikov
  • G. I. KropotovEmail author
  • V. E. Rogalin


The transmission of intrinsic, antimony-doped, and gallium-doped Ge single crystals in the THz spectral range have been experimentally investigated. It is shown that the attenuation coefficient of intrinsic germanium in the range of 160‒220 μm is at a level of ~0.5 cm‒1, a value comparable with that for silicon. The free-carrier absorption cross sections of silicon and germanium are significantly different, which may be caused by the difference in the mechanisms of carrier–phonon interaction in these materials.



This study was performed using the resources of the Center for Collective Use of Tver State University and supported by the Ministry of Science and Higher Education of the Russian Foundation within a government contract for scientific work, no. 3.5786.2017/8.9.


  1. 1.
    A. Glagoleva-Arkadieva, Nature, No. 5, 640 (1924).Google Scholar
  2. 2.
    V. E. Rogalin, I. A. Kaplunov, and G. I. Kropotov, Opt. Spectrosc. 125 (6), 1053 (2018).Google Scholar
  3. 3.
    T. Y. Chang, T. J. Bridges, and E. G. Burkhardt, Appl. Phys. Lett. 17, 249 (1970).ADSCrossRefGoogle Scholar
  4. 4.
    S. Ya. Tochitsky, J. E. Ralph, C. Sung, and C. Joshi, J. Appl. Phys. 98, 26101 (2005).CrossRefGoogle Scholar
  5. 5.
    D. I. Levinzon, R. E. Rovinskii, V. E. Rogalin, E. P. Rykun, A. L. Trainin, I. S. Tsenina, and E. G. Sheikhet, Izv. Akad. Nauk SSSR 43, 2001 (1979).Google Scholar
  6. 6.
    R. E. Rovinskii, V. E. Rogalin, and V. A. Shershel, Bull. Acad. Sci. U.S.S.R.: Phys. 47, 188 (1983).Google Scholar
  7. 7.
    L. Claeys and E. Simoen, Germanium-Based Technologies: From Materials to Devices (Elsevier, Berlin, 2007).Google Scholar
  8. 8.
    E. V. Loewenstein, D. R. Smith, and R. L. Morgan, Appl. Opt. 12, 398 (1973).ADSCrossRefGoogle Scholar
  9. 9.
    D. Grischkowsky, S. Keiding, M. van Exter, and Ch. Fattinger, J. Opt. Soc. Am. B 7, 2006 (1990).ADSCrossRefGoogle Scholar
  10. 10.
    V. B. Voloshinov, P. A. Nikitin, V. V. Gerasimov, B. A. Knyazev, and Yu. Yu. Choporova, Quantum Electron. 43, 1139 (2013).ADSCrossRefGoogle Scholar
  11. 11.
    I. A. Kaplunov, P. A. Nikitin, V. B. Voloshinov, A. I. Kolesnikov, and B. A. Knyazev, J. Phys.: Conf. Ser. 37, 012021 (2016).Google Scholar
  12. 12.
    V. A. Soifer, Computer Design of Diffractive Optics (Cambridge Int. Sci., Woodhead, Cambridge, 2012).Google Scholar
  13. 13.
    M. V. Kurik, J. Appl. Spectrosc. 4, 199 (1966).ADSCrossRefGoogle Scholar
  14. 14.
    I. A. Kaplunov, A. I. Kolesnikov, I. V. Talyzin, L. V. Sedova, and S. L. Shaiovich, J. Opt. Technol. 72, 564 (2005).ADSCrossRefGoogle Scholar
  15. 15.
    I. A. Kaplunov, Yu. M. Smirnov, and A. I. Kolesnikov, J. Opt. Technol. 72, 214 (2005).ADSCrossRefGoogle Scholar
  16. 16.
    H. Hass and B. Bendow, Appl. Opt. 16, 2882 (1977).ADSCrossRefGoogle Scholar
  17. 17.
    C. J. Hutchinson, C. Lewis, J. A. Savage, and A. Pitt, Appl. Opt. 21, 1490 (1982).ADSCrossRefGoogle Scholar
  18. 18.
    Handbook of Infrared Optical Materials (CRC, New York, 1991).Google Scholar
  19. 19.
    THz Materials. Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • I. A. Kaplunov
    • 1
  • A. I. Kolesnikov
    • 1
  • G. I. Kropotov
    • 2
    Email author
  • V. E. Rogalin
    • 1
    • 3
  1. 1.Tver State UniversityTverRussia
  2. 2.Tydex CompanySt. PetersburgRussia
  3. 3.National Center of Laser Systems and Integrated Units AstrofizikaMoscowRussia

Personalised recommendations