Advertisement

Optics and Spectroscopy

, Volume 126, Issue 2, pp 118–123 | Cite as

Electroluminescence of Single InGaN/GaN Micropyramids

  • A. V. BabichevEmail author
  • D. V. Denisov
  • P. Lavenus
  • G. Jacopin
  • M. Tchernycheva
  • F. H. Julien
  • H. Zhang
PHYSICAL OPTICS
  • 72 Downloads

Abstract

The results of the fabrication of technological regimes of formation and the study of the optical properties of light emitting diodes (LED) micropyramids based on InGaN/GaN are presented. The structures were formed by the method of Metalorganic vapour-phase epitaxy. LED hetero structures based on single micropyramids demonstrate electroluminescence at a wavelength of 520–590 nm, which is shifted to the shortwave length region with increasing current pumping. These light-emission sources are of interest for the fabrication of high-intensity point light sources for biosensor applications.

Notes

ACKNOWLEDGMENTS

D.V. Denisov thanks a partial support of the Ministry of Education and Science of the Russian Federation, state order no. 16.9789.2017/BCh). We thank O. Kryliouk for providing the micropyramid samples.

REFERENCES

  1. 1.
    T.-i. Kim, J. G. McCall, Y. H. Jung, X. Huang, E. R. Siuda, Y. Li, J. Song, Y. M. Song, H. A. Pao, R.‑H. Kim, C. Lu, S. D. Lee, I.-S. Song, G. Shin, Al‑R. Hasani, S. Kim, M. P. Tan, Y. Huang, F. G. Omenetto, J. A. Rogers, and M. R. Bruchas, Science (Washington, DC, U. S.). 340, 211 (2013).  https://doi.org/10.1126/science.1232437 CrossRefGoogle Scholar
  2. 2.
    R. Koester, J.-S. Hwang, D. Salomon, X. Chen, C. Bougerol, J.-P. Barnes, D. L. S. Dang, L. Rigutti, A. L. Bugallo, G. Jacopin, M. Tchernycheva, C. Durand, and J. Eymery, Nano Lett. 11, 4839 (2011).  https://doi.org/10.1021/nl202686n ADSCrossRefGoogle Scholar
  3. 3.
    Z. Bi, A. Gustafsson, F. Lenrick, D. Lindgren, O. Hultin, L. R. Wallenberg, B. J. Ohlsson, B. Monemar, and L. Samuelson, J. Appl. Phys. 123, 025102 (2018).  https://doi.org/10.1063/1.5010237 ADSCrossRefGoogle Scholar
  4. 4.
    T. Martensson, C. P. T. Svensson, B. A. Wacaser, M. W. Larsson, W. Seifert, K. Deppert, A. Gustafsson, L. R. Wallenberg, and L. Samuelson, Nano Lett. 4, 1987 (2004).  https://doi.org/10.1021/nl0487267 ADSCrossRefGoogle Scholar
  5. 5.
    L. Largeau, D. L. Dheeraj, M. Tchernycheva, G. E. Cirlin, and J. C. Harmand, Nanotechnology 19, 155704 (2008).  https://doi.org/10.1088/0957-4484/19/15/155704 ADSCrossRefGoogle Scholar
  6. 6.
    R. Calarco, R. J. Meijers, R. K. Debnath, T. Stoica, E. Sutter, and H. Luth, Nano Lett. 7, 2248 (2007).  https://doi.org/10.1021/nl0707398 ADSCrossRefGoogle Scholar
  7. 7.
    V. Kumaresan, L. Largeau, A. Madouri, F. Glas, H. Zhang, F. Oehler, A. Cavanna, A. Babichev, L. Travers, N. Gogneau, M. Tchernycheva, and J.-C. Harmand, Nano Lett. 16, 4895 (2016).  https://doi.org/10.1021/acs.nanolett.6b01453 ADSCrossRefGoogle Scholar
  8. 8.
    V. Kumaresan, L. Largeau, A. Madouri, F. Glas, H. Zhang, F. Oehler, A. Cavanna, A. Babichev, L. Travers, N. Gogneau, M. Tchernycheva, and J.-C. Harmand, in Proceedings of the European Microscopy Congress 2016, p. 668.  https://doi.org/10.1002/9783527808465.emc2016.6807
  9. 9.
    S. Fernandez-Garrido, M. Ramsteiner, G. Gao, L. A. Galves, B. Sharma, P. Corfdir, G. Calabrese, Z. de Souza Schiaber, C. Pfuller, A. Trampert, J. M. J. Lopes, O. Brandt, and L. Geelhaar, Nano Lett. 17, 5213 (2017).  https://doi.org/10.1021/acs.nanolett.7b01196 ADSCrossRefGoogle Scholar
  10. 10.
    S. Fernandez-Garrido, M. Ramsteiner, G. Gao, L. A. Galves, B. Sharma, P. Corfdir, G. Calabrese, Z. de Souza Schiaber, C. Pfuller, A. Trampert, J. M. J. Lopes, O. Brandt, and L. Geelhaar, Proc. SPIE 10532, 105321U (2018).  https://doi.org/10.1117/12.2288233 Google Scholar
  11. 11.
    N. Guan, X. Dai, A. V. Babichev, F. H. Julien, and M. Tchernycheva, Chem. Sci. 8, 7904 (2017).  https://doi.org/10.1039/c7sc02573d CrossRefGoogle Scholar
  12. 12.
    Z. Tian, Y. Li, X. Su, L. Feng, S. Wang, W. Ding, Q. Li, Y. Zhang, M. Guo, F. Yun, and S. W. R. Lee, Opt. Express 26, 1817 (2018).  https://doi.org/10.1364/oe.26.001817 ADSCrossRefGoogle Scholar
  13. 13.
    J. H. Choi, E. H. Cho, Y. S. Lee, M.-B. Shim, H. Y. Ahn, C.-W. Baik, E. H. Lee, K. Kim, T. H. Kim, S. Kim, K.‑S. Cho, J. Yoon, M. Kim, and S. Hwang, Adv. Opt. Mater. 2, 267 (2013).  https://doi.org/10.1002/adom.201300435 CrossRefGoogle Scholar
  14. 14.
    Y. Kato, S. Kitamura, K. Hiramatsu, and N. Sawaki, J. Cryst. Growth 144, 133 (1994).  https://doi.org/10.1016/0022-0248(94)90448-0 ADSCrossRefGoogle Scholar
  15. 15.
    S. Kitamura, K. Hiramatsu, and N. Sawaki, Jpn. J. Appl. Phys. 34, L1184 (1995).  https://doi.org/10.1143/jjap.34.l1184 ADSCrossRefGoogle Scholar
  16. 16.
    S. Bidnyk, B. D. Little, Y. H. Cho, J. Krasinski, J. J. Song, W. Yang, and S. A. McPherson, Appl. Phys. Lett. 73, 2242 (1998).  https://doi.org/10.1063/1.121689 ADSCrossRefGoogle Scholar
  17. 17.
    Y.-H. Ko, J.-H. Kim, L.-H. Jin, S.-M. Ko, B.-J. Kwon, J. Kim, T. Kim, and Y.-H. Cho, Adv. Mater. 23, 5364 (2011).  https://doi.org/10.1002/adma.201102534 CrossRefGoogle Scholar
  18. 18.
    T. Stankevic, S. Mickevicius, M. Schou Nielsen, O. Kryliouk, R. Ciechonski, G. Vescovi, O. Kryliouk, R. Ciechonski, G. Vescovi, Z. Bi, A. Mikkelsen, L. Samuelson, C. Gundlach, and R. Feidenhans’l, J. Appl. Crystallogr. 48, 344 (2015).  https://doi.org/10.1107/s1600576715000965 CrossRefGoogle Scholar
  19. 19.
    D. Y. Song, A. Chandolu, N. Stojanovic, S. A. Nikishin, and M. Holtz, J. Appl. Phys. 104, 064309 (2008).  https://doi.org/10.1063/1.2978382 ADSCrossRefGoogle Scholar
  20. 20.
    G. Tong, W. Jia, T. Fan, H. Dong, T. Li, Z. Jia, and B. Xu, Mater. Lett. 224, 86 (2018).  https://doi.org/10.1016/j.matlet.2018.04.089 CrossRefGoogle Scholar
  21. 21.
    M. Tchernycheva, P. Lavenus, H. Zhang, A. V. Babichev, G. Jacopin, M. Shahmohammadi, F. H. Julien, R. Ciechonski, G. Vescovi, and O. Kryliouk, Nano Lett. 14, 2456 (2014).  https://doi.org/10.1021/nl5001295 ADSCrossRefGoogle Scholar
  22. 22.
    T. Stankevic, E. Hilner, F. Seiboth, R. Ciechonski, G. Vescovi, O. Kryliouk, U. Johansson, L. Samuelson, G. Wellenreuther, G. Falkenberg, R. Feidenhans’l, and A. Mikkelsen, ACS Nano 9, 6978 (2015).  https://doi.org/10.1021/acsnano.5b01291 CrossRefGoogle Scholar
  23. 23.
    T. J. Kempa and C. M. Lieber, Pure Appl. Chem. 86, 13 (2014).  https://doi.org/10.1515/pac-2014-5010 CrossRefGoogle Scholar
  24. 24.
    M. Tchernycheva, V. Neplokh, H. Zhang, P. Lavenus, L. Rigutti, F. Bayle, F. H. Julien, A. Babichev, G. Jacopin, L. Largeau, R. Ciechonski, G. Vescovi, and O. Kryliouk, Nanoscale 7, 11692 (2015).  https://doi.org/10.1039/c5nr00623f ADSCrossRefGoogle Scholar
  25. 25.
    O. Hultin, G. Otnes, M. T. Borgstrom, M. Bjork, L. Samuelson, and K. Storm, Nano Lett. 16, 205 (2015).  https://doi.org/10.1021/acs.nanolett.5b03496 ADSCrossRefGoogle Scholar
  26. 26.
    A. C. Thompson, P. R. Stoddart, and E. D. Jansen, Curr. Mol. Imaging 3, 162 (2015).  https://doi.org/10.2174/2211555203666141117220611 CrossRefGoogle Scholar
  27. 27.
    C. Goßler, C. Bierbrauer, R. Moser, M. Kunzer, K. Holc, W. Pletschen, K. Kohler, J. Wagner, M. Schwaerzle, P. Ruther, O. Paul, J. Neef, D. Keppeler, G. Hoch, T. Moser, and U. T. Schwarz, J. Phys. D: Appl. Phys. 47, 205401 (2014).  https://doi.org/10.1088/0022-3727/47/20/205401 ADSCrossRefGoogle Scholar
  28. 28.
    S. Ayub, C. Gossler, M. Schwaerzle, E. Klein, O. Paul, U. T. Schwarz, and P. Ruther, in Proceedings of the IEEE 29th International Conference on MEMS, 2016, p. 379.  https://doi.org/10.1109/memsys.2016.7421640
  29. 29.
    A. Soltan, B. McGovern, E. Drakakis, M. Neil, P. Maaskant, M. Akhter, J. S. Lee, and P. Degenaar, IEEE Trans. Biomed. Circuits Syst. 11, 347 (2017).  https://doi.org/10.1109/tbcas.2016.2623949 CrossRefGoogle Scholar
  30. 30.
    S. Metzner, F. Bertram, C. Karbaum, T. Hempel, T. Wunderer, S. Schwaiger, F. Lipski, F. Scholz, C. Wachter, M. Jetter, P. Michler, and J. Christen, Phys. Status Solidi B 248, 632 (2011).  https://doi.org/10.1002/pssb.201046500 ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • A. V. Babichev
    • 1
    Email author
  • D. V. Denisov
    • 2
    • 3
  • P. Lavenus
    • 4
  • G. Jacopin
    • 5
  • M. Tchernycheva
    • 4
  • F. H. Julien
    • 4
  • H. Zhang
    • 4
    • 5
  1. 1.ITMO UniversitySt. PetersburgRussia
  2. 2.St. Petersburg Electrotechnical University “LETI”St. PetersburgRussia
  3. 3.St. Petersburg Academic University of the Russian Academy of SciencesSt. PetersburgRussia
  4. 4.Centre for Nanoscience and Nanotechnology (C2N Orsay), CNRS UMR9001, Université Paris Sud, Université Paris SaclayOrsayFrance
  5. 5.École Polytechnique Fédérale de LausanneLausanneSwitzerland

Personalised recommendations