Optics and Spectroscopy

, Volume 126, Issue 1, pp 41–43 | Cite as

Analysis of the Temperature Dependence of the Exciton Luminescence Spectra of Cadmium Selenide Quantum Dots Grown in a Liquid Crystal Matrix

  • K. A. MagaryanEmail author
  • K. R. Karimullin
  • I. A. Vasil’eva
  • A. V. Naumov


The temperature dependences of the positions of maxima of exciton bands in the luminescence spectra of liquid crystal nanocomposites with CdSe quantum dots with sizes of 1.8 and 2.3 nm at T = 77–300 K have been analyzed. The analysis under the theoretical model taking into account the electron–phonon interaction inside quantum dots has made it possible to calculate the values of the Huang–Rhys factor and average phonon energy in nanocrystals under study.



This work was financially supported by the Russian Science Foundation (project no. 14-12-01415, the study of the temperature behavior of the luminescence spectra of quantum dots) and by the Russian Foundation for Basic Research (project no. 18-02-01121, the study of dynamic processes in solid nanocomposites).

We deeply thank Profs. T.A. Mirnaya and G.V. Klimusheva for kindly providing samples.


  1. 1.
    J. Bao and M. G. Bawendi, Nature (London, U.K.) 523, 67 (2015). ADSCrossRefGoogle Scholar
  2. 2.
    M. Yu. Gubin, A. V. Shesterikov, S. N. Karpov, and A. V. Prokhorov, Phys. Rev. B 97, 085431 (2018). ADSCrossRefGoogle Scholar
  3. 3.
    A. Aubret, A. Pillonnet, J. Houel, C. Dujardin, and F. Kulzer, Nanoscale 8, 2317 (2016). ADSCrossRefGoogle Scholar
  4. 4.
    A. V. Naumov, A. A. Gorshelev, M. G. Gladush, T. A. Anikushina, A. V. Golovanova, J. Köhler, and L. Kador, ACS Nano Lett. (2018).
  5. 5.
    F. J. Zhang, B. Wang, F. F. Pang, and T. Y. Wang, Proc. SPIE 7990, 79900R (2011). CrossRefGoogle Scholar
  6. 6.
    I. S. Osad’ko, I. Yu. Eremchev, and A. V. Naumov, J.   Phys. Chem. C 119, 22646 (2015). CrossRefGoogle Scholar
  7. 7.
    S. Francoeur, J. F. Klem, and A. Mascarenhas, Phys. Rev. Lett. 93, 067403 (2004). ADSCrossRefGoogle Scholar
  8. 8.
    N. L. Naumova, I. A. Vasil’eva, and I. S. Osad’ko, Opt. Spectrosc. 98, 535 (2005). ADSCrossRefGoogle Scholar
  9. 9.
  10. 10.
    G. Ortner, D. R. Yakovlev, M. Bayer, S. Rudin, T. L. Reinecke, S. Fafard, Z. Wasilewski, and A. Forchel, Phys. Rev. B 70, 201301(R) (2004).
  11. 11.
    D. Valerini, A. Creti, M. Lomascolo, L. Manna, R. Cingolani, and M. Anni, Phys. Rev. B 71, 235409 (2005). ADSCrossRefGoogle Scholar
  12. 12.
    I. Favero, A. Berthelot, G. Cassabois, C. Voisin, C. Delalande, Ph. Roussignol, R. Ferreira, and J. M. Gerard, Phys. Rev. B 75, 073308 (2007). ADSCrossRefGoogle Scholar
  13. 13.
    X. Wen, A. Sitt, P. Yu, Y. R. Toh, and J. Tang, Phys. Chem. Chem. Phys. 14, 3505 (2012). CrossRefGoogle Scholar
  14. 14.
    K. A. Magaryan, M. A. Mikhailov, I. A. Vasilieva, K. R. Karimullin, and G. V. Klimusheva, Bull. Russ. Acad. Sci.: Phys. 78, 1336 (2014). CrossRefGoogle Scholar
  15. 15.
    K. A. Magarian, V. V. Fedyanin, K. R. Karimullin, I. A. Vasilieva, and G. V. Klimusheva, J. Phys.: Conf. Ser. 478, 012007 (2013). Google Scholar
  16. 16.
    K. A. Magaryan, M. A. Mikhailov, K. R. Karimullin, M. V. Knyazev, I. Y. Eremchev, A. V. Naumov, I. A. Vasilieva, and G. V. Klimusheva, J. Lumin. 169, 799 (2016). CrossRefGoogle Scholar
  17. 17.
    K. R. Karimullin, M. A. Mikhailov, M. G. Georgieva, K. A. Magaryan, and I. A. Vasilieva, J. Phys.: Conf. Ser. 951, 012011 (2018). Google Scholar
  18. 18.
  19. 19.
    K. P. O’Donnell and X. Chen, Appl. Phys. Lett. 58, 2924 (1991). ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • K. A. Magaryan
    • 1
    • 2
    Email author
  • K. R. Karimullin
    • 1
    • 2
  • I. A. Vasil’eva
    • 1
  • A. V. Naumov
    • 1
    • 2
  1. 1.Moscow State Pedagogical UniversityMoscowRussia
  2. 2.Institute for Spectroscopy, Russian Academy of SciencesTroitskMoscowRussia

Personalised recommendations