Advertisement

Optics and Spectroscopy

, Volume 125, Issue 6, pp 1053–1064 | Cite as

Optical Materials for the THz Range

  • V. E. Rogalin
  • I. A. KaplunovEmail author
  • G. I. Kropotov
ULTRAVIOLET, INFRARED, AND TERAHERTZ OPTICS
  • 17 Downloads

Abstract

The properties of optical materials usable in the terahertz (THz) spectral range, which is the boundary between the optical and radio ranges, are examined. The relevance of the research field associated with the optics of THz devices is largely governed by intensified activity on creating lasers operating in the THz range and the discovery of substantial problems in the use of optical materials for these applications in general. The present study is devoted to analyzing the properties—especially optical properties—of the THz materials used. The characteristics are given, and the physical, chemical, and optical properties of conventional and new materials, including crystalline (silicon, sapphire, quartz, diamond, germanium, and silicon carbide), as well as a number of polymers (polymethylpentene, polyethylene, and polytetrafluoroethylene), are discussed and compared.

Notes

ACKNOWLEDGMENTS

This study was performed using resources of the Collective Use Center of Twersky State University within Government research contract no. 3.5786.2017/8.9.

REFERENCES

  1. 1.
    Xi-Cheng Zhang and Jingzhou Xu, Introduction to THz Wave Photonics (Springer, New York, 2010). doi 10.1007/978-1-4419-0978-7CrossRefGoogle Scholar
  2. 2.
    E. Brundermann, H. W. Hubers, and M. F. Kimmit, Terahertz Techniques (Springer, Heidelberg, 2012).CrossRefGoogle Scholar
  3. 3.
    Y. S. Lee, Principles of Terahertz Science and Technology (Springer, New York, 2009).Google Scholar
  4. 4.
    R. A. Lewis, Terahertz Physics (Cambridge Univ. Press, Cambridge, 2012).CrossRefGoogle Scholar
  5. 5.
    V. L. Malevich, G. V. Sinitsyn, G. B. Sochilin, and N. N. Rosanov, Opt. Spectrosc. 124, 889 (2018).ADSCrossRefGoogle Scholar
  6. 6.
    N. N. Rosanov, M. V. Arkhipov, R. M. Arkhipov, A. V. Pakhomov, and I. V. Babushkin, Opt. Spectrosc. 123, 100 (2017).ADSCrossRefGoogle Scholar
  7. 7.
    N. N. Rosanov, Opt. Spectrosc. 107, 651 (2009).ADSCrossRefGoogle Scholar
  8. 8.
    T. Y. Chang, T. J. Bridges, and E. G. Burkhardt, Appl. Phys. Lett. 17, 249 (1970).ADSCrossRefGoogle Scholar
  9. 9.
    R. E. Miles, P. Harrison, and D. Lippens, Terahertz Sources and Systems, Vol. 27 of NATO Science Series II (Kluwer Academic, Dordrecht, 2001).Google Scholar
  10. 10.
    A. A. Andronov, I. V. Zverev, V. A. Kozlov, Yu. N. Nozdrin, S. A. Pavlov, and V. N. Shastin, JETP Lett. 40, 804 (1984).ADSGoogle Scholar
  11. 11.
    V. V. Parshin, Int. J. Infrared Millim. Waves 15, 339 (1994).ADSCrossRefGoogle Scholar
  12. 12.
    M. J. Weber, Gas Lasers. Handbook of Lasers (CRC, Boca Raton, FL, 2001).Google Scholar
  13. 13.
    K. L. Vodopyanov, Opt. Express 14, 2263 (2006).ADSCrossRefGoogle Scholar
  14. 14.
    B. G. Bravy, Yu. A. Chernyshev, V. M. Gordienko, E. F. Makarov, V. Ya. Panchenko, V. T. Platonenko, and G. K. Vasil’ev, Opt. Express 20, 25536 (2012).ADSCrossRefGoogle Scholar
  15. 15.
    A. A. Vedenov, G. D. Myl’nikov, and D. N. Sobolenko, Sov. Phys. Usp. 25, 833 (1982).ADSCrossRefGoogle Scholar
  16. 16.
    S. Ya. Tochitsky, C. Sung, S. E. Trubnick, C. Joshi, and K. L. Vodopyanov, J. Opt. Soc. Am. B 24, 2509 (2007).ADSCrossRefGoogle Scholar
  17. 17.
    S. Ya. Tochitsky, J. E. Ralph, C. Sung, and C. Joshi, J. Appl. Phys. 98, 26101 (2005).CrossRefGoogle Scholar
  18. 18.
    D. Haberberger, S. Tochitsky, and C. Joshi, Opt. Express 18, 17865 (2010).ADSCrossRefGoogle Scholar
  19. 19.
    A. S. Abramov, I. O. Zolotovskii, R. N. Minvaliev, and D. I. Sementsov, Opt. Spectrosc. 117, 96 (2014).ADSCrossRefGoogle Scholar
  20. 20.
    N. A. Vinokurov and O. A. Shevchenko, Phys. Usp. 61, 435 (2018).ADSCrossRefGoogle Scholar
  21. 21.
    N. V. Chernomyrdin, A. O. Shchadko, S. P. Lebedev, I. E. Spektor, V. L. Tolstoguzov, A. S. Kucheryavenko, K. M. Malakhov, G. A. Komandin, V. S. Gorelik, and K. I. Zaitsev, Opt. Spectrosc. 124, 428 (2018).ADSCrossRefGoogle Scholar
  22. 22.
    N. N. Rozanov, G. B. Sochilin, S. V. Fedorov, A. N. Shatsev, V. L. Malevich, and G. V. Sinitsyn, Opt. Spectrosc. 123, 146 (2017).ADSCrossRefGoogle Scholar
  23. 23.
    THz Materials. http://www.tydexoptics.com/ru/products/thz_optics/thz_materials/.Google Scholar
  24. 24.
    V. E. Rogalin and S. M. Aranchii, Integral, No. 5, 7 (2012).Google Scholar
  25. 25.
    V. G. Ral’chenko and A. P. Bol’shakov, in Carbon Photonics, Ed. by V. I. Konov (Nauka, Moscow, 2017) [in Russian].Google Scholar
  26. 26.
    J. D. Wheeler, B. Koopman, P. Gallardo, P. R. Maloney, S. Brugge, G. Cortes-Medellin, R. Datta, C. Darren Dowell, J. Glenn, S. Golwala, C. McKenney, J. J. McMahon, Ch. D. Munson, M. Niemack, and S. G. Parshley, in Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy VII, Ed. by W. S. Holland and J. Zmuidzinas, Proc. SPIE 9153, 91532Z (2014). doi 10.1117/12.2057011Google Scholar
  27. 27.
    D. L. Golovashkin, L. L. Doskolovich, N. L. Kazanskii, V. V. Kotlyar, V. S. Pavel’ev, R. V. Skidanov, V. A. Soifer, and S. N. Khonina, Diffraction Computer Optics (Fizmatlit, Moscow, 2007) [in Russian].Google Scholar
  28. 28.
    V. A. Soifer, Computer Design of Diffractive Optics (Cambridge Int. Sci., Woodhead, Cambridge, 2012).Google Scholar
  29. 29.
    Tydex Silicon. http://www.tydexoptics.com/ru/materials/for_transmission_optics/silicon/.Google Scholar
  30. 30.
    B. A. Andreev, T. V. Kotereva, V. V. Parshin, V. B. Shmagin, and R. Heidinger, Inorg. Mater. 33, 1100 (1997).Google Scholar
  31. 31.
    D. Grischkowsky, S. Keiding, M. van Exter, and C. Fattinger, J. Opt. Soc. Am. B 7, 2006 (1990).ADSCrossRefGoogle Scholar
  32. 32.
    B. M. Garin, A. N. Kopnin, M. P. Parkhomenko, A. A. Izyneev, and V. A. Sablikov, Tech. Phys. Lett. 20, 878 (1994).ADSGoogle Scholar
  33. 33.
    V. V. Korotaev, G. S. Mel’nikov, S. V. Mikheev, V. M. Samkov, and Yu. I. Soldatov, Principles of Heat Vision (ITMO, St. Petersburg, 2012) [in Russian].Google Scholar
  34. 34.
    Tydex Germanium. http://www.tydexoptics.com/ru/materials/for_transmission_optics/germanium/.Google Scholar
  35. 35.
    R. E. Rovinskii, V. E. Rogalin, and V. A. Shershel’, Izv. Akad. Nauk SSSR, Ser. Fiz. 47, 406 (1983).ADSGoogle Scholar
  36. 36.
    L. Claeys and E. Simoen, Germanium-Based Technologies: From Materials to Devices (Elsevier, Berlin, 2007).Google Scholar
  37. 37.
    V. B. Voloshinov, P. A. Nikitin, V. V. Gerasimov, B. A. Knyazev, and Yu. Yu. Choporova, Quantum Electron. 43, 1139 (2013).ADSCrossRefGoogle Scholar
  38. 38.
    I. A. Kaplunov, P. A. Nikitin, V. B. Voloshinov, A. I. Kolesnikov, and B. A. Knyazev, J. Phys.: Conf. Ser. 737, 012021 (2016).Google Scholar
  39. 39.
    I. A. Kaplunov, A. I. Kolesnikov, G. I. Kropotov, and V. E. Rogalin, Opt. Spektrosk. 126, 271 (2019).Google Scholar
  40. 40.
    E. E. Chigryai, B. M. Garin, R. N. Denisyuk, D. S. Kalenov, and I. Nikitin, Zh. Radioelektron., No. 11, 18 (2016).Google Scholar
  41. 41.
    V. V. Parshin, E. A. Serov, G. G. Denisov, B. M. Garin, V. N. V’yuginov, V. A. Klevtsov, and N. K. Travin, Elektron. Mikroelektron. SVCh 1 (1), 45 (2017).Google Scholar
  42. 42.
    V. V. Parshin, E. A. Serov, G. G. Denisov, B. M. Garin, V. N. V’yuginov, V. A. Klevtsov, and N. K. Travin, in Proceedings of the 27th International Crimean Conference on Microwave Enqineering and Telecommunication Technologies KryMiKo’2017, Sevastopol, 2017, p. 920.Google Scholar
  43. 43.
    A. N. Lobachev, Hydrothermal Crystal Synthesis (Nauka, Moscow, 1968) [in Russian].Google Scholar
  44. 44.
    Tydex Crystal Quartz. http://www.tydexoptics.com/ru/materials/for_transmission_optics/crystal_quartz/.Google Scholar
  45. 45.
    M. I. Musatov, Technique and Technology of Growing Sapphire Crystals by the SOI Method (Politekh. Univ., St. Petersburg, 2013) [in Russian].Google Scholar
  46. 46.
    Tydex Sapphire. http://www.tydexoptics.com/ru/materials/for_transmission_optics/synthetic_sapphire/.Google Scholar
  47. 47.
    B. V. Spitsyn and B. V. Deryagin, USSR Inventor’s Certificate No. 339134 (1956).Google Scholar
  48. 48.
    S. Ho, C. S. Yan, Z. Liu, H. K. Mao, and R. J. Hemley, Ind. Diamond Rev. 66, 28 (2006).Google Scholar
  49. 49.
    V. E. Rogalin, E. E. Ashkenazi, A. F. Popovich, V. G. Ral’chenko, V. I. Konov, S. M. Aranchii, M. V. Ruzin, and S. A. Uspenskii, Russ. Microelectron. 41, 464 (2012).CrossRefGoogle Scholar
  50. 50.
    B. M. Garin, V. I. Polyakov, A. I. Rukovishnikov, V. V. Parshin, E. A. Serov, O. S. Mocheneva, Ch. Ch. Jia, W. Z. Tang, and F. X. Lu, NATO Sci. Peace Security, Ser. B: Phys. Biophys., 79 (2013).Google Scholar
  51. 51.
    B. M. Garin, A. N. Kopnin, V. V. Parshin, V. G. Ral’chenko, E. E. Chigryai, V. I. Konov, A. B. Mazur, and M. P. Parkhomenko, Tech. Phys. Lett. 25, 288 (1999).ADSCrossRefGoogle Scholar
  52. 52.
    Plastics Technology, Ed. by V. V. Korshak (Khimiya, Moscow, 1985) [in Russian].Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • V. E. Rogalin
    • 1
    • 2
  • I. A. Kaplunov
    • 2
    Email author
  • G. I. Kropotov
    • 3
  1. 1.National Center of Laser Systems and Integrated Units AstrofizikaMoscowRussia
  2. 2.Tver State UniversityTverRussia
  3. 3.Tydex CompanySt. PetersburgRussia

Personalised recommendations