Advertisement

Optics and Spectroscopy

, Volume 125, Issue 5, pp 795–802 | Cite as

Anisotropy of Light Scattering by Foamed Liquids

  • D. A. ZimnyakovEmail author
  • S. A. Yuvchenko
  • A. A. Isaeva
  • E. A. Isaeva
  • O. V. Ushakova
APPLIED OPTICS
  • 20 Downloads

Abstract

Optical transport parameters (transport propagation length of radiation and scattering length) have been experimentally studied in samples of a foamed liquid for a wavelength range of 500–900 nm. On the basis of the obtained experimental data, the values of the anisotropy parameter of light scattering in a foamed liquid are found as a function of the aging time. It is concluded that the values of the scattering anisotropy parameter close to zero in the early stages of aging are due to a strong correlation of the spatial positions of the scattering centers (gas bubbles in the liquid-phase matrix). The increase in the scattering anisotropy parameter with aging of the foam is due to “optical” inversion (a transition from the regime of light scattering by gas bubbles in a liquid to scattering by regions of intersections of the foam cell boundaries in a gas matrix medium).

Notes

ACKNOWLEDGMENTS

This work was supported by the grant of the Russian Foundation for Basic Research, grant no. 16-02-00458-a. D.A. Zimnyakov expresses gratitude to the Ministry of Education and Science of the Russian Federation for supporting this study in terms of interpreting the data obtained through project 3.7567.2017.

REFERENCES

  1. 1.
    A. Ishimaru, Propagation and Scattering of Waves in Random Media (Academic, New York, 1978), Vol. 1.zbMATHGoogle Scholar
  2. 2.
    P. Sebbah, Waves and Imaging through Complex Media (Kluwer Academic, Dordrecht, Boston, 2001).CrossRefGoogle Scholar
  3. 3.
    D. J. Durian, D. A. Weitz, and D. J. Pine, Science (Washington, DC, U. S.) 252 (5006), 686 (1991). doi 10.1126/science.252.5006.686ADSCrossRefGoogle Scholar
  4. 4.
    M. U. Vera, A. Saint-Jalmes, and D. J. Durian, Appl. Opt. 40, 4210 (2001). doi 10.1364/AO.40.004210ADSCrossRefGoogle Scholar
  5. 5.
    A. S. Gittings, R. Bandyopadhyay, and D. J. Durian, Europhys. Lett. 65, 414 (2004). doi 10.1209/epl/i2003-10084-4ADSCrossRefGoogle Scholar
  6. 6.
    A. S. Gittings and D. J. Durian, Appl. Opt. 45, 2199 (2006). doi 10.1364/AO.45.002199ADSCrossRefGoogle Scholar
  7. 7.
    L. F. Rojas-Ochoa, J. M. Mendez-Alcaraz, J. J. Sáenz, P. Schurtenberger, and F. Scheffold, Phys. Rev. Lett. 93, 073903 (2004). doi 10.1103/PhysRevLett.93.073903ADSCrossRefGoogle Scholar
  8. 8.
    I. Cantat, S. Cohen-Addad, F. Elias, F. Graner, R. Hohler, O. Pitois, F. Rouyer, and A. Saint-Jalmes, Foams. Structure and Dynamics (Oxford Univ. Press, Oxford, 2013).CrossRefGoogle Scholar
  9. 9.
    J. G. Rivas, R. Sprik, C. M. Soukoulis, K. Busch, and A. Lagendijk, Europhys. Lett. 48, 22 (1999). doi 10.1209/epl/i1999-00108-7ADSCrossRefGoogle Scholar
  10. 10.
    P. D. Kaplan, M. H. Kao, A. G. Yodh, and D. J. Pine, Appl. Opt. 32, 3828 (1993). doi 10.1364/AO.32.003828ADSCrossRefGoogle Scholar
  11. 11.
    J. X. Zhu, D. J. Pine, and D. A. Weitz, Phys. Rev. A 44, 3948 (1991). doi 10.1103/PhysRevA.44.3948ADSCrossRefGoogle Scholar
  12. 12.
    S. Fraden and G. Maret, Phys. Rev. Lett. 65, 512 (1990). doi 10.1103/PhysRevLett.65.512ADSCrossRefGoogle Scholar
  13. 13.
    M. S. Wertheim, Phys. Rev. Lett. 10, 321 (1963). doi 10.1103/PhysRevLett.10.321ADSMathSciNetCrossRefGoogle Scholar
  14. 14.
    S. Prahl, Mie Scattering Calculator. http://www.omlc.org/calc/mie_calc.html.Google Scholar
  15. 15.
    K. A. Shapovalov, Optics 2, 32 (2013). doi 10.11648/j.optics.20130202.11CrossRefGoogle Scholar
  16. 16.
    D. A. Zimnyakov, S. A. Yuvchenko, J. S. Sina, and O. V. Ushakova, JETP Lett. 98, 326 (2013). doi 10.1134/S0021364013190119ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • D. A. Zimnyakov
    • 1
    • 2
    Email author
  • S. A. Yuvchenko
    • 1
  • A. A. Isaeva
    • 1
  • E. A. Isaeva
    • 1
  • O. V. Ushakova
    • 1
  1. 1.Yuri Gagarin State Technical University of SaratovSaratovRussia
  2. 2.Institute of Precision Mechanics and Control, Russian Academy of SciencesSaratovRussia

Personalised recommendations