Advertisement

Optics and Spectroscopy

, Volume 125, Issue 5, pp 783–794 | Cite as

Normal-Incidence Imaging Spectrograph Based on an Aperiodic Spherical Grating for the Vacuum Spectral Region

  • E. A. Vishnyakov
  • A. O. KolesnikovEmail author
  • E. N. RagozinEmail author
  • A. N. Shatokhin
GEOMETRICAL OPTICS
  • 19 Downloads

Abstract

The possibility of astigmatism compensation in a wide wavelength range in normal incidence schemes based on a spherical diffraction grating with variable groove density has been considered. Two schemes imaging spectrographs with dimensions of about 1 and 5 m for the wavelength ranges 820–1690 and 980–1520 Å that operate in the first external and first internal diffraction orders, respectively, have been calculated. It has been shown that the advantage of the external order of diffraction is a wide (more than an octave) spectral range at relatively compact sizes of the device. Schemes operating in internal orders of diffraction have better imaging characteristics, but large dimensions of the device are required to maintain the width of the wavelength range at the octave level. A comparison of the above schemes with schemes based on gratings with curvilinear grooves has been carried out. It has been shown that the variable line-spaced gratings yield a gain in the limiting spatial resolution, while the gratings with curvilinear grooves allow the achievement of a better limiting spectral resolution. The schemes of the considered type can be applied in the soft X-ray range when using diffraction gratings with a multilayer coating.

Notes

ACKNOWLEDGMENTS

This research was performed with the support of a grant from the Russian Science Foundation, project no. 14-12-00506.

REFERENCES

  1. 1.
    A. S. Pirozhkov, M. Kando, T. Zh. Esirkepov, P. Gallegos, H. Ahmed, E. N. Ragozin, A. Ya. Faenov, T. A. Pikuz, T. Kawachi, A. Sagisaka, J. K. Koga, M. Coury, J. Green, P. Foster, C. Brenner, et al., Phys. Rev. Lett. 108, 135004 (2012).ADSCrossRefGoogle Scholar
  2. 2.
    M. Kando, A. S. Pirozhkov, K. Kawase, T. Zh. Esirkepov, Y. Fukuda, H. Kiriyama, H. Okada, I. Daito, T. Kameshima, Y. Hayashi, H. Kotaki, M. Mori, J. K. Koga, H. Daido, A. Ya. Faenov, et al., Phys. Rev. Lett. 103, 235003 (2009).ADSCrossRefGoogle Scholar
  3. 3.
    J. A. R. Samson, Techniques of Vacuum Ultraviolet Spectroscopy (Wiley, New York, 1967).Google Scholar
  4. 4.
    A. N. Zaidel’ and E. Ya. Shreider, Vacuum Spectroscopy and Its Applications (Nauka, Moscow, 1976).Google Scholar
  5. 5.
    H. A. Rowland, Philos. Mag. Ser. 5, 469 (1882).CrossRefGoogle Scholar
  6. 6.
    J. L. Sirks, Astron. Astrophys. 13, 763 (1894).Google Scholar
  7. 7.
    M. A. Cornu, C. R. Acad. Sci. 117, 1032 (1893).Google Scholar
  8. 8.
    F. M. Gerasimov, E. A. Yakovlev, I. V. Peisakhson, and B. V. Koshelev, Opt. Spektrosk. 28, 790 (1970).Google Scholar
  9. 9.
    T. Harada and T. Kita, Appl. Opt. 19, 3987 (1980).ADSCrossRefGoogle Scholar
  10. 10.
    T. Kita, T. Harada, N. Nakano, and H. Kuroda, Appl. Opt. 22, 512 (1983).ADSCrossRefGoogle Scholar
  11. 11.
    T. Harada, H. Sakuma, K. Takahashi, T. Watanabe, H. Hara, and T. Kita, Appl. Opt. 37, 6803 (1998).ADSCrossRefGoogle Scholar
  12. 12.
    I. V. Peisakhson, Optics of Spectral Devices (Mashinostroenie, Leningrad, 1975) [in Russian].Google Scholar
  13. 13.
    F. M. Gerasimov, E. A. Yakovlev, and B. V. Koshelev, Opt. Spectrosc. 46, 665 (1979).ADSGoogle Scholar
  14. 14.
    G. P. Startsev, A. N. Dubrovin, A. V. Savushkin, V. G. Travina, and L. M. Fainberg, in Proceedings of the All-Union Conference on Devices and Methods of Spectroscopy, Novosibirsk, 1979, p. 38.Google Scholar
  15. 15.
    T. J. Namioka, J. Opt. Soc. Am 49, 446 (1959).ADSMathSciNetCrossRefGoogle Scholar
  16. 16.
    J. C. Rife, W. R. Hunter, T. W. Barbee, and R. G. Cruddace, Appl. Opt. 28, 2984 (1989).ADSCrossRefGoogle Scholar
  17. 17.
    M. P. Kowalski, J. F. Seely, W. R. Hunter, J. C. Rife, T. W. Barbee, G. E. Holland, C. N. Boyer, C. M. Brown, and R. G. Cruddace, Appl. Opt. 32, 2422 (1993).ADSCrossRefGoogle Scholar
  18. 18.
    W. R. Hunter, Exp. Methods Phys. Sci. 31, 379 (1998).CrossRefGoogle Scholar
  19. 19.
    D. L. Voronov, L. I. Goray, T. Warwick, V. V. Yashchuk, and H. A. Padmore, Opt. Express 23, 4771 (2015).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Lebedev Physical Institute, Russian Academy of SciencesMoscowRussia
  2. 2.Moscow Institute of Physics and TechnologyDolgoprudnyiRussia

Personalised recommendations