Advertisement

Optics and Spectroscopy

, Volume 125, Issue 5, pp 673–678 | Cite as

Spectral Optical Properties of Polymer Composite Nanomaterials Based on Carbon Nanotubes in a High-Density Polyethylene Matrix

  • N. M. UshakovEmail author
  • M. Yu. Vasil’kov
  • V. R. Shaturnyi
  • I. D. Kosobudskii
OPTICAL MATERIALS
  • 14 Downloads

Abstract

The spectral optical characteristics of polymer composite nanomaterials based on carbon nanotubes (CNTs) in a high-density polyethylene (HDPE) matrix have been measured. The obtained experimental data have been compared with calculated data. The single-frequency model of the Lorentz oscillator is proposed for use as the theoretical model. It has been shown that samples with a carbon nanotube concentration of 10 wt % in a high-density polyethylene matrix provide high optical absorption of 90 ± 1% in the whole measured range from 300 to 800 nm. CNT–HDPE-based polymer composite nanomaterials may find practical applications in different devices of optical radiation attenuation and photoacoustics.

Notes

REFERENCES

  1. 1.
    K. Lee, S. Cho, S. H. Park, A. J. Heeger, et al., Nature (London, U.K.) 441, 65 (2006).ADSCrossRefGoogle Scholar
  2. 2.
    H. Shirakawa, Angew. Chem. Int. Ed. 40, 2574 (2001).CrossRefGoogle Scholar
  3. 3.
    F. Hempel, J. K.-Y. Law, T. C. Nguen, et al., Biosens. Bioelectron. 93, 132 (2017).CrossRefGoogle Scholar
  4. 4.
    S. J. Lee, H. P. Kim, A. R. bin Mohd Yusoff, and J. Jang, Sol. Energy Mater. Sol. Cells 120, 238 (2014).CrossRefGoogle Scholar
  5. 5.
    K.-Y. Ho, C.-K. Li, and H.-J. Syu, J. Appl. Phys. 120, 215501 (2016). doi 10.1063/1.4970827ADSCrossRefGoogle Scholar
  6. 6.
    B.-J. Kim, S.-H. Han, and J.-S. Park, Thin Solid Films 572, 68 (2014).ADSCrossRefGoogle Scholar
  7. 7.
    Xiao Hong Yin, Masanori Ozaki, and Katsumi Yoshino, Jpn. J. Appl. Phys. 32, 4348 (1993).ADSCrossRefGoogle Scholar
  8. 8.
    K. Feldapp, W. Brutting, M. Schwoerer, et al., Synth. Met. 101, 156 (1999).CrossRefGoogle Scholar
  9. 9.
    H. Dodziuk, Introduction to Supramolecular Chemistry (Springer, Berlin, 2002).Google Scholar
  10. 10.
    R. Pogreb, B. Finkelshtein, Yu. Shmukler, et al., Polym. Adv. Technol. 15, 414 (2004).CrossRefGoogle Scholar
  11. 11.
    N. M. Ushakov, V. I. Kochubey, K. V. Zapsis, and I. D. Kosobudsky, Opt. Spectrosc. 96, 798 (2004).ADSCrossRefGoogle Scholar
  12. 12.
    N. M. Ushakov, G. Yu. Yurkov, K. V. Zapsis, et al., Opt. Spectrosc. 100, 414 (2006).ADSCrossRefGoogle Scholar
  13. 13.
    S. P. Gubin, G. Yu. Yurkov, and I. D. Kosobudsky, Polym. Int. J. Mater. Product. Technol. 23, 2 (2005). doi 10.1504/IJMPT.2005.006587Google Scholar
  14. 14.
    W.-F. Cheong, A. P. Scott, and A. J. Welch, IEEE J. Quantum Electron. 26, 2166 (1990).ADSCrossRefGoogle Scholar
  15. 15.
    T. S. Moss, G. J. Burrell, and B. Ellis, Semiconductor Opto-Electronics (Butterworth, London, 1973).Google Scholar
  16. 16.
    C. G. Ribbing, Introduction to Material Optics, a Compendium (Uppsala Univ., Sweden, 2002).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • N. M. Ushakov
    • 1
    Email author
  • M. Yu. Vasil’kov
    • 1
    • 2
  • V. R. Shaturnyi
    • 1
    • 3
  • I. D. Kosobudskii
    • 1
    • 2
  1. 1.Institute of Radio Engineering and Electronics (Saratov Branch), Russian Academy of SciencesSaratovRussia
  2. 2.Saratov State Technical UniversitySaratovRussia
  3. 3.Saratov State UniversitySaratovRussia

Personalised recommendations