Advertisement

Optics and Spectroscopy

, Volume 125, Issue 5, pp 619–626 | Cite as

Application of Wavelet Transform to the Raman 2D Peak Components Analysis for Tri- and Tetralayer Graphene

  • T. E. TimofeevaEmail author
  • E. P. Neustroev
  • V. I. Popov
  • P. V. Vinokurov
  • V. B. Timofeev
SPECTROSCOPY OF CONDENSED STATES
  • 29 Downloads

Abstract

In this paper we have proposed a wavelet-based approach to study peak components fitting to the Raman 2D band of few layer graphene. As a result of the Continuous Wavelet Transform application peak components of the Raman 2D band are visualized and their number and peak frequencies are determined. It is found that there are four and five peak components of the 2D band for bilayer and trilayer graphene stacked in the Bernal (ABA) configuration respectively. In the case of tetralayer graphene with the rhombohedral (ABC) stacking there are also five peak components of the Raman 2D band. The peak frequencies of detected components are in good agreement with the experimental data.

REFERENCES

  1. 1.
    K. F. Mak, J. Shan, and T. F. Heinz, Phys. Rev. Lett. 104, 176404 (2010). doi 10.1103/PhysRevLett.104.176404ADSCrossRefGoogle Scholar
  2. 2.
    F. Guinea, A. H. Castro Neto, and N. M. R. Peres, Solid State Commun. 143, 116 (2007). doi 10.1016/j.ssc.2007.03.053Google Scholar
  3. 3.
    F. Guinea, A. H. Castro Neto, and N. M. R. Peres, Phys. Rev. B 73, 245426 (2006). doi 10.1103/PhysRevB.73.245426ADSCrossRefGoogle Scholar
  4. 4.
    C. H. Lui, Zh. Li, Zh. Chen, P. V. Klimov, L. E. Brus, and T. F. Heinz, Nano Lett. 11, 164 (2011). doi 10.1021/nl1032827ADSCrossRefGoogle Scholar
  5. 5.
    M. H. Aoki and H. Amawashi, Solid State Commun. 142, 123 (2007). doi 10.1016/j.ssc.2007.02.013ADSCrossRefGoogle Scholar
  6. 6.
    C. J. Tabert and E. J. Nicol, Phys. Rev. B 86, 075439 (2012). doi 10.1103/PhysRevB.86.075439ADSCrossRefGoogle Scholar
  7. 7.
    M. Koshino and E. McCann, Phys. Rev. B 87, 45420 (2013). doi 10.1103/PhysRevB.87.045420ADSCrossRefGoogle Scholar
  8. 8.
    F. Zhang, B. Sahu, H. Min, and A. H. MacDonald, Phys. Rev. B 82, 035409 (2010). doi 10.1103/PhysRevB.82.035409ADSCrossRefGoogle Scholar
  9. 9.
    C. Bao, W. Yao, E. Wang, C. Chen, J. Avila, M. C. Asensio, et al., Nano Lett. 17, 1564 (2017). doi 10.1021/acs.nanolett.6b04698ADSCrossRefGoogle Scholar
  10. 10.
    M. F. Craciun, S. Russo, M. Yamamoto, J. B. Oostinga, A. F. Morpurgo, and S. Tarusha, Nat. Nanotechnol. 4, 383 (2009). doi 10.1038/nnano.2009.89Google Scholar
  11. 11.
    W. Bao, L. Jing, Jr. Velasco, Y. Lee, G. Liu, D. Tran, et al., Nat. Phys. 7, 948 (2011). doi 10.1038/nphys2103CrossRefGoogle Scholar
  12. 12.
    A. A. Avetisyan, B. Partoens, and F. M. Peeters, Phys. Rev. B 81, 115432 (2010). doi 10.1103/PhysRevB.81.115432ADSCrossRefGoogle Scholar
  13. 13.
    T. Khodkov, I. Khrapach, M. F. Craciun, and S. Russo, Nano Lett. 15, 4429 (2015). doi 10.1021/acs.nanolett.5b00772ADSCrossRefGoogle Scholar
  14. 14.
    A. L. Grushina , D.-K. Ki , M. Koshino, A. A. L. Nicolet, C. Faugeras, E. McCann, et al., Nat. Commun. 6, 6419 (2015). doi 10.1038/ncomms7419CrossRefGoogle Scholar
  15. 15.
    Y. Nam, D-K. Ki, M. Koshino, E. McCann, and A. F. Morpurgo, 2D Mater. 3, 045014 (2016). http://iopscience.iop.org/article/10.1088/2053-1583/3/4/045014.Google Scholar
  16. 16.
    M. Koshino, K. Sugisawa, and E. McCann, Phys. Rev. B 95, 235311 (2017). doi 10.1103/PhysRevB.95.235311ADSCrossRefGoogle Scholar
  17. 17.
    K. Myhro, S. Che, Y. Shi, Y. Lee, K. Thilahar, K. Bleich, et al., arXiv:1803.03222 (2018).Google Scholar
  18. 18.
    L. M. Malard, M. H. D. Guimaraes, D. L. Mafra, M. S. C. Mazzoni, and A. Jorio, Phys. Rev. B 79, 125426 (2009). doi 10.1103/PhysRevB.79.125426ADSCrossRefGoogle Scholar
  19. 19.
    S. K. Saha, U. V. Waghmare, H. R. Krishnamurthy, and A. K. Sood, Phys. Rev. B 78, 165421 (2008). doi 10.1103/PhysRevB.78.165421ADSCrossRefGoogle Scholar
  20. 20.
    A. Gupta, G. Chen, P. Joshi, S. Tadigadapa, and P. Eklund, Nano Lett. 6, 2767 (2006). doi 10.1021/nl061420aGoogle Scholar
  21. 21.
    J. W. Jiang, H. Tang, B. S. Wang, and Z. B. Su, Phys. Rev. B 77, 235421 (2008). doi 10.1103/PhysRevB.77.235421ADSCrossRefGoogle Scholar
  22. 22.
    J. Yan, Y. Zhang, P. Kim, and A. Pinczuk, Phys. Rev. Lett. 98, 166802 (2007). doi 10.1103/PhysRevLett.98.166802ADSCrossRefGoogle Scholar
  23. 23.
    C. H. Lui, E. Cappelluti, Zh. Li, and T. F. Heinz, Phys. Rev. Lett. 110, 185504 (2013). doi 10.1103/PhysRevLett.110.185504ADSCrossRefGoogle Scholar
  24. 24.
    K. F. Mak, M. Y. Sfeir, J. A. Misewich, and T. F. Heinz, Proc. Natl. Acad. Sci. 107, 14999 (2010). doi 10.1073/pnas.1004595107ADSCrossRefGoogle Scholar
  25. 25.
    R. W. Havener, Y. Liang, L. Brown, L. Yang, and J. Park, Nano Lett. 14, 3353 (2014). doi 10.1021/nl500823kADSCrossRefGoogle Scholar
  26. 26.
    H. Patel, R. W. Havener, L. Brown, Y. Liang, L. Yang, J. Park, et al., Nano Lett. 2015, 5932 (2015). doi 10.1021/acs.nanolett.5b02035ADSCrossRefGoogle Scholar
  27. 27.
    R. Sharma, J. H. Baik, C. J. Perera, and M. S. Strano, Nano Lett. 10, 398 (2010). doi 10.1021/nl902741xADSCrossRefGoogle Scholar
  28. 28.
    A. C. Ferrari and D. M. Basko, Nat. Nanotechnol. 8, 235 (2013). doi 10.1038/nnano.2013.46ADSCrossRefGoogle Scholar
  29. 29.
    A. C. Ferrari, Solid State Commun. 143, 47 (2007). doi 10.1016/j.ssc.2007.03.052ADSCrossRefGoogle Scholar
  30. 30.
    L. M. Malard, J. Nilsson, D. C. Elias, J. C. Brant, F. Plentz, E. S. Alved, et al., Phys. Rev. B 76, 201401 (2007). doi 10.1103/PhysRevB.76.201401ADSCrossRefGoogle Scholar
  31. 31.
    D. Graf, F. Molitor, K. Ensslin, C. Stampfer, A. Jungen, C. Hierold, et al., Nano Lett. 7, 238 (2007). doi 10.1021/nl061702aADSCrossRefGoogle Scholar
  32. 32.
    A. Das, B. Chakraborty, and A. K. Sood, Bull. Mater. Sci. 31, 579 (2008). doi 10.1007/s12034-008-0090-5CrossRefGoogle Scholar
  33. 33.
    M. Bayle, N. Reckinger, A. Felten, P. Lois, O. Lancry, B. Dutertre, et al., J. Raman Spectrosc. 49, 36 (2018). doi 10.1002/jrs.5279ADSCrossRefGoogle Scholar
  34. 34.
    D. Yoon, H. Moon, H. Cheong, J. Choi, J. Choi, and B. Park, J. Korean Phys. Soc. 55, 1299 (2009). doi 10.3938/jkps.55.1299ADSCrossRefGoogle Scholar
  35. 35.
    R. Rao, R. Podila, R. Tsuchikawa, J. Katoch, et al., ACS Nano 5, 1594 (2011). doi 10.1021/nn1031017CrossRefGoogle Scholar
  36. 36.
    F. Herziger, C. Tyborski, O. Ochedowski, M. Schleberger, and J. Maultzsch, Carbon 133, 254 (2018). doi 10.1016/j.carbon.2018.03.026CrossRefGoogle Scholar
  37. 37.
    J. S. Park, A. Reina, R. Saito, J. Kong, G. Dresselhausd, and M. S. Dresselhaus, Carbon 47, 1303 (2009). doi 10.1016/j.carbon.2009.01.009CrossRefGoogle Scholar
  38. 38.
    A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, et al., Phys. Rev. Lett. 97, 187401 (2006). doi 10.1103/physrevlett.97.187401ADSCrossRefGoogle Scholar
  39. 39.
    L. M. Malard, M. A. Pimenta, G. Dresselhaus, and M. S. Dresselhaus, Phys. Rep. 473, 51 (2009). doi 10.1016/j.physrep.2009.02.003ADSCrossRefGoogle Scholar
  40. 40.
    Z. Ni, Y. Wang, T. Yu, and Z. Shen, Nano Res. 1, 273 (2008). doi 10.1007/s12274-008-8036-1CrossRefGoogle Scholar
  41. 41.
    C. Cong, T. Yu, K. Sato, J. Shang, R. Saito, G. F. Dresselhaus, and M. S. Dresselhaus, ACS Nano 5, 8760 (2011). doi 10.1021/nn203472fCrossRefGoogle Scholar
  42. 42.
    Y. Hao, Y. Wang, L. Wang, Z. Ni, Z. Wang, R. Wang, et al., Small 6, 195 (2010). doi 10.1002/smll.200901173CrossRefGoogle Scholar
  43. 43.
    N. K. Smolentsev, Fundamentals of the Theory of Wavelets in MATLAB (DMK, Moscow, 2005) [in Russian].Google Scholar
  44. 44.
    N. M. Astafieva, Phys. Usp. 39, 1085 (1996). doi 10.3367/UFNr.0166.199611a.1145ADSCrossRefGoogle Scholar
  45. 45.
    O. Rioul and M. Vetterli, IEEE Signal Process. Mag. 8, 14 (1991). doi 10.1109/79.91217ADSCrossRefGoogle Scholar
  46. 46.
    M. Misiti, Y. Misiti, G. Oppenheim, and J. M. Poggi, Wavelets and Their Applications (ISTE, London, 2007). doi 10.1002/9780470612491.fmatterCrossRefzbMATHGoogle Scholar
  47. 47.
    P. Blake, E. W. Hill, Castro A. H. Neto, K. S. No-voselov, D. Jiang, R. Yang, et al., Appl. Phys. Lett. 91, 063124 (2007). doi 10.1063/1.2768624ADSCrossRefGoogle Scholar
  48. 48.
    Y. K. Koh, M-H. Bae, D. G. Cahill, and E. Pop, ACS Nano 5, 269 (2011). doi 10.1021/nn102658aCrossRefGoogle Scholar
  49. 49.
    T. E. Timofeeva, S. A. Smagulova, and V. I. Popov, Semiconductors 49, 814 (2015). doi 10.1134/S1063782615060251ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • T. E. Timofeeva
    • 1
    Email author
  • E. P. Neustroev
    • 1
  • V. I. Popov
    • 1
  • P. V. Vinokurov
    • 1
  • V. B. Timofeev
    • 1
  1. 1.North-Eastern Federal UniversityYakutskRussia

Personalised recommendations