Advertisement

Optics and Spectroscopy

, Volume 125, Issue 5, pp 688–692 | Cite as

Circular Dichroism Study of Colloidal Semiconductor Nanoscrolls

  • N. V. Tepliakov
  • A. S. Baimuratov
  • I. A. Vovk
  • M. Yu. Leonov
  • A. V. Baranov
  • A. V. Fedorov
  • I. D. Rukhlenko
NANOPHOTONICS
  • 28 Downloads

Abstract

Chiral semiconductor nanoscrolls are promising materials for applications in chiral chemistry, biomedicine, and spintronics. Despite a large number of studies on the formation of nanoscrolls, there is lack of consistent theory of their optical and chiroptical properties. In this paper, we propose a simple analytical model of semiconductor nanoscrolls, based on the original coordinate transformation method and two-band effective mass approximation. This model allows to simulate absorption and circular dichroism spectra of nanoscroll of given geometry and material composition and to analyze experimental data.

Notes

ACKNOWLEDGMENTS

This work was funded by Grant MD-1294.2017.2 of the President of the Russian Federation for Young Scientists. The authors also thank the Ministry of Education and Science of the Russian Federation for its Grant 14.Y26.31.0028 and Scholarships SP-2066.2016.1 and SP-1975.2016.1.

REFERENCES

  1. 1.
    J. Zhang, M. T. Albelda, Y. Liu, and J. W. Canary, Chirality 17, 404 (2005).CrossRefGoogle Scholar
  2. 2.
    N. V. Tepliakov, I. A. Vovk, A. S. Baimuratov, M. Y. Leonov, A. V. Baranov, A. V. Fedorov, and I. D. Rukhlenko, J. Phys. Chem. Lett. 9, 2941 (2018).CrossRefGoogle Scholar
  3. 3.
    A. S. Baimuratov, N. V. Tepliakov, Y. K. Gun’ko, A. V. Baranov, A. V. Fedorov, and I. D. Rukhlenko, Sci. Rep. 6, 5 (2016).CrossRefGoogle Scholar
  4. 4.
    I. A. Vovk, N. V. Tepliakov, M. Y. Leonov, A. V. Ba-ranov, A. V. Fedorov, and I. D. Rukhlenko, J. Opt. Soc. Am. A 34, 1940 (2017).ADSCrossRefGoogle Scholar
  5. 5.
    I. D. Rukhlenko, N. V. Tepliakov, A. S. Baimuratov, S. A. Andronaki, Y. K. Gun’ko, A. V. Baranov, and A. V. Fedorov, Sci. Rep. 6, 36884 (2016).ADSCrossRefGoogle Scholar
  6. 6.
    I. A. Vovk, A. S. Baimuratov, W. Zhu, A. G. Shalkovskiy, A. V. Baranov, A. V. Fedorov, and I. D. Rukhlenko, Sci. Rep. 7, 45925 (2017).ADSCrossRefGoogle Scholar
  7. 7.
    A. S. Baimuratov, N. V. Tepliakov, Y. K. Gun’ko, A. G. Shalkovskiy, A. V. Baranov, A. V. Fedorov, and I. D. Rukhlenko, Chirality 29, 159 (2017).CrossRefGoogle Scholar
  8. 8.
    A. S. Baimuratov, N. V. Tepliakov, Y. K. Gun’ko, A. V. Baranov, A. V. Fedorov, and I. D. Rukhlenko, Opt. Spectrosc. 122, 42 (2017).ADSCrossRefGoogle Scholar
  9. 9.
    N. V. Tepliakov, A. S. Baimuratov, Y. K. Gun’ko, A. V. Baranov, A. V. Fedorov, and I. D. Rukhlenko, Opt. Spectrosc. 122, 64 (2017).ADSCrossRefGoogle Scholar
  10. 10.
    N. V. Tepliakov, A. S. Baimuratov, Y. K. Gun’ko, A. V. Baranov, A. V. Fedorov, and I. D. Rukhlenko, Nanophotonics 5, 573 (2016).CrossRefGoogle Scholar
  11. 11.
    I.V Martynenko, V. A. Kuznetsova, I. K. Litvinov, A. O. Orlova, V. G. Maslov, A. V. Fedorov, A. Dubavik, F. Purcell-Milton, Y. K. Gun’ko, and A. V. Baranov, Nanotechnology 27, 75102 (2016).CrossRefGoogle Scholar
  12. 12.
    N. V. Tepliakov, M. Y. Leonov, A. V. Baranov, A. V. Fe-dorov, and I. D. Rukhlenko, Opt. Spectrosc. 122, 101 (2017).ADSCrossRefGoogle Scholar
  13. 13.
    N. V. Tepliakov, I. O. Ponomareva, M. Y. Leonov, A. V. Baranov, A. V. Fedorov, and I. D. Rukhlenko, J. Phys. Chem. C 120, 2379 (2016).CrossRefGoogle Scholar
  14. 14.
    N. V. Tepliakov, M. Y. Leonov, A. V. Baranov, A. V. Fe-dorov, and I. D. Rukhlenko, Opt. Express 24, A52 (2016).ADSCrossRefGoogle Scholar
  15. 15.
    F. Purcell-Milton, R. McKenna, L. J. Brennan, C. P. Cul-len, L. Guillemeney, N. V. Tepliakov, A. S. Baimuratov, I. D. Rukhlenko, T. S. Perova, G. S. Duesberg, A. V. Baranov, A. V. Fedorov, and Y. K. Gun’ko, ACS Nano 12, 954 (2018).CrossRefGoogle Scholar
  16. 16.
    R. B. Vasiliev, M. S. Sokolikova, A. G. Vitukhnovskii, S. A. Ambrozevich, A. S. Selyukov, and V. S. Lebedev, Quantum. Electron. 45, 853 (2015).ADSCrossRefGoogle Scholar
  17. 17.
    N. V. Tepliakov, A. S. Baimuratov, I. A. Vovk, M. Y. Leonov, A. V. Baranov, A. V. Fedorov, and I. D. Rukhlenko, ACS Nano 11, 7508 (2017).CrossRefGoogle Scholar
  18. 18.
    N. V. Tepliakov, A. S. Baimuratov, A. V. Baranov, A. V. Fedorov, and I. D. Rukhlenko, Proc. SPIE 10114, 1011418 (2017).CrossRefGoogle Scholar
  19. 19.
    H. Haug and S. W. Koch, Quantum Theory of the Optical and Electronic Properties of Semiconductors (World Scientific, Singapore, 2009).CrossRefzbMATHGoogle Scholar
  20. 20.
    N. Berova, P. L. Polavarapu, K. Nakanishi, and R. W. Woody, Comprehensive Chiroptical Spectroscopy: Instrumentation, Methodologies, and Theoretical Simulations (Wiley, New York, 2012), Vol. 1.CrossRefGoogle Scholar
  21. 21.
    N. V. Tepliakov, A. S. Baimuratov, A. V. Baranov, A. V. Fedorov, and I. D. Rukhlenko, J. Appl. Phys. 119, 194302 (2016).ADSCrossRefGoogle Scholar
  22. 22.
    I. D. Rukhlenko, A. S. Baimuratov, N. V. Tepliakov, A. V. Baranov, and A. V. Fedorov, Opt. Lett. 41, 2438 (2016).ADSCrossRefGoogle Scholar
  23. 23.
    S. Ithurria, M. D. Tessier, B. Mahler, R. Lobo, B. Dubertret, and A. L. Efros, Nat. Mater. 10, 936 (2011).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • N. V. Tepliakov
    • 1
  • A. S. Baimuratov
    • 1
  • I. A. Vovk
    • 1
  • M. Yu. Leonov
    • 1
  • A. V. Baranov
    • 1
  • A. V. Fedorov
    • 1
  • I. D. Rukhlenko
    • 1
  1. 1.Information Optical Technologies Center, ITMO UniversitySt. PetersburgRussia

Personalised recommendations