Optics and Spectroscopy

, Volume 125, Issue 5, pp 803–809 | Cite as

A Simultaneous Analysis of Microregions of Carious Dentin by the Methods of Laser-Induced Fluorescence and Raman Spectromicroscopy

  • P. V. SeredinEmail author
  • D. L. Goloshchapov
  • T. Prutskij
  • Yu. A. Ippolitov


Using laser-induced fluorescence and Raman spectromicroscopy methods, an analysis of microregions of the human tooth dentin tissue affected by caries was performed within the frameworks of the integrated research technique (λ = 514.5 nm). A simultaneous screening by two methods of microregions close to the interface between the intact and infected dentin allowed us to observe an intensive response in both the Raman spectrum and range of induced fluorescence. The data analysis showed that vibrational modes registered by the method of the Raman spectromicroscopy are related to the amino acids of DNA/RNA of cariogenic bacteria and porphyrins, which are a consequence of their vital activity. This is confirmed by the data of laser-induced fluorescence. The revealed spectral features can be successfully used in stomatology when diagnosing carious lesions of different level of formation.



This study was supported by a grant of the Russian Science Foundation, project no. 17-75-10046.


  1. 1.
    A. M. Muruppel, in Lasers in Dentistry—Current Concepts, Ed. by D. J. Coluzzi and S. P. A. Parker (Springer Int., Cham, 2017). doi 10.1007/978-3-319-51944-9_6Google Scholar
  2. 2.
    M. B. Diniz, J. A. Rodrigues, A. Lussi, and Ming-Yu Li, Traditional and Novel Caries Detection Methods, Contemporary Approach to Dental Caries (InTech, Rijeka, 2012). doi 10.5772/38209Google Scholar
  3. 3.
    Q. G. Chen, H. H. Zhu, Y. Xu, B. Lin, and H. Chen, Laser Phys. 25, 085601 (2015). doi 10.1088/1054-660X/25/8/085601ADSCrossRefGoogle Scholar
  4. 4.
    Y. Liu, X. Yao, Y. W. Liu, and Y. Wang, Caries Res. 48, 320 (2014). doi 10.1159/000356868CrossRefGoogle Scholar
  5. 5.
    T. Buchwald, Z. Okulus, and M. Szybowicz, J. Raman Spectrosc. 48, 1094 (2017). doi 10.1002/jrs.5175ADSCrossRefGoogle Scholar
  6. 6.
    R. Cheng, J. Shao, X. Gao, C. Tao, J. Ge, and X. Liu, Sci. Rep. 6, 21798 (2016). doi 10.1038/srep21798ADSCrossRefGoogle Scholar
  7. 7.
    E. Cepeda-Pérez, C. Moreno-Hernández, T. López-Luke, D. Monzón-Hernández, and E. Rosa, Biomed. Phys. Eng. Express 2, 065006 (2016). doi 10.1088/2057-1976/2/6/065006CrossRefGoogle Scholar
  8. 8.
    J. Gomez, BMC Oral Health 15, S3 (2015). doi 10.1186/1472-6831-15-S1-S3CrossRefGoogle Scholar
  9. 9.
    Y. Wang and X. Yao, Dent. Mater. 26, 433 (2010). doi 10.1016/ Scholar
  10. 10.
    H. Salehi, E. Terrer, I. Panayotov, B. Levallois, B. Jacquot, and H. J. Tassery, Biophotonics 6, 1 (2012). doi 10.1002/jbio.201200095Google Scholar
  11. 11.
    M. Toledano, I. Cabello, M. A. C. Vílchez, M. A. Fer-nández, and R. Osorio, Microsc. Microanal. 20, 245 (2014). doi 10.1017/S1431927613013639ADSCrossRefGoogle Scholar
  12. 12.
    C. Camerlingo, F. d’Apuzzo, V. Grassia, L. Perillo, and M. Lepore, Sensors 14, 22552 (2014). doi 10.3390/s141222552CrossRefGoogle Scholar
  13. 13.
    P. V. Seredin, D. L. Goloshchapov, Y. A. Ippolitov, and E. S. Kalivradzhiyan, Russ. Open. Med. J. 7, e0106 (2018). doi 10.15275/rusomj.2018.0106CrossRefGoogle Scholar
  14. 14.
    P. Seredin, D. Goloshchapov, T. Prutskij, and Y. Ippolitov, PLoS One 10, e0124008 (2015). doi 10.1371/journal.pone.0124008CrossRefGoogle Scholar
  15. 15.
    S. Fujii, S. Sato, K. Fukuda, T. Okinaga, W. Ariyoshi, and M. Usui, Anal. Sci. Int. J. Jpn. Soc. Anal. Chem. 32, 225 (2016). doi 10.2116/analsci.32.225CrossRefGoogle Scholar
  16. 16.
    P. Seredin, D. Goloshchapov, V. Kashkarov, Y. Ippolitov, and K. Bambery, Results. Phys. 6, 315 (2016). doi 10.1016/j.rinp.2016.06.005ADSCrossRefGoogle Scholar
  17. 17.
    P. Seredin, D. Goloshchapov, Y. Ippolitov, and P. Vongsvivut, EPMA J. 9, 195 (2018). doi 10.1007/s13167-018-0135-9CrossRefGoogle Scholar
  18. 18.
    V. Dusevich, C. Xu, Y. Wang, M. P. Walker, and J. P. Gorski, Arch. Oral. Biol. 57, 1585 (2012). doi 10.1016/j.archoralbio.2012.04.014CrossRefGoogle Scholar
  19. 19.
    U. S. Almhöjd, J. G. Norén, A. Arvidsson, A. Nilsson, and P. Lingström, Oral Health Dent. Manag. 13, 735 (2014). doi 10.4172/2247-2452.1000666Google Scholar
  20. 20.
    T. T. Maske, C. P. Isolan, F. H. Sande, A. C. Peixoto, A. L. Faria-e-Silva, and M. S. Cenci, Clin. Oral Investig. 19, 1047 (2014). doi 10.1007/s00784-014-1331-1CrossRefGoogle Scholar
  21. 21.
    A. Almahdy, F. C. Downey, S. Sauro, R. J. Cook, M. Sherriff, and D. Richards, Caries Res. 46, 432 (2012). doi 10.1159/000339487CrossRefGoogle Scholar
  22. 22.
    A. Slimani, F. Nouioua, I. Panayotov, N. Giraudeau, K. Chiaki, and Y. Shinji, Int. J. Exp. Dent. Sci. 5, 1 (2016). doi 10.5005/jp-journals-10029-1115Google Scholar
  23. 23.
    M. A. Alebrahim, C. Krafft, and J. Popp, IOP Conf. Ser. Mater. Sci. Eng. 92, 012014 (2015). doi 10.1088/1757-899X/92/1/012014Google Scholar
  24. 24.
    C. Xu and Y. Wang, Arch. Oral Biol. 57, 383 (2012). doi 10.1016/j.archoralbio.2011.09.008Google Scholar
  25. 25.
    M. Garcés-Ortíz, C. Ledesma-Montes, and J. Reyes-Gasga, J. Endod. 41, 1510 (2015). doi 10.1016/j.joen.2015.02.026Google Scholar
  26. 26.
    R. A. Giacaman, V. A. Perez, and C. A. Carrera, Mineralization Processes in Hard Tissues. Biomineralization and Biomaterials (Elsevier, Amsterdam, 2016). doi 10.1016/B978-1-78242-338-6.00006-5Google Scholar
  27. 27.
    I. N. Rôças, F. R. F. Alves, C. T. C. C. Rachid, K. C. Lima, I. V. Assunção, and P. N. Gomes, PLoS One 11, e0154653 (2016). doi 10.1371/journal.pone.0154653CrossRefGoogle Scholar
  28. 28.
    R. M. Duckworth, The Teeth and Their Environment: Physical, Chemical and Biochemical Influences (Karger Medical and Scientific, 2006).Google Scholar
  29. 29.
    B. D. Beier, R. G. Quivey, and A. J. Berger, AMB Express 2, 35 (2012). doi 10.1186/2191-0855-2-35CrossRefGoogle Scholar
  30. 30.
    A. C. Tanner, C. Kressirer, L. Faller, K. Lake, F. Dew-hirst, and A. J. Kokarasb, Oral Microbiol. 9, 1325194 (2017). doi 10.1080/20002297.2017.1325194CrossRefGoogle Scholar
  31. 31.
    W. Yin, Y. Feng, D-Y. Hu, R. P. Ellwood, and I. A. Pretty, West China J. Stomatol. 28, 278 (2010).Google Scholar
  32. 32.
    L. Bachmann, D. M. Zezell, A. da C. Ribeiro, L. Go-mes, and A. S. Ito, Appl. Spectrosc. Rev. 41, 575 (2006). doi 10.1080/05704920600929498ADSCrossRefGoogle Scholar
  33. 33.
    L. Zhang, L. Y. Nelson, and E. J. Seibel, J. Biomed. Opt. 16, 071411 (2011). doi 10.1117/1.3606572ADSCrossRefGoogle Scholar
  34. 34.
    P. V. Seredin, D. L. Goloshchapov, M. S. Gushchin, Y. A. Ippolitov, and T. Prutskij, J. Phys.: Conf. Ser. 917, 042019 (2017). doi 10.1088/1742-6596/917/4/042019Google Scholar
  35. 35.
    C. Xu, K. Karan, X. Yao, and Y. Wang, J. Raman Spectrosc. 40, 1780 (2009). doi 10.1002/jrs.2320ADSCrossRefGoogle Scholar
  36. 36.
    Z. Movasaghi, S. Rehman, and I. U. Rehman, Appl. Spectrosc. Rev. 42, 493 (2007). doi 10.1080/05704920701551530ADSCrossRefGoogle Scholar
  37. 37.
    B. Levallois, E. Terrer, Y. Panayotov, H. Salehi, H. Tassery, and P. Tramini, Eur. J. Oral. Sci. 120, 444 (2012). doi 10.1111/j.1600-0722.2012.00988.xCrossRefGoogle Scholar
  38. 38.
    S. Nakamura, M. Ando, H. Hamaguchi, and M. Yamamoto, Lasers Med. Sci. 32, 1857 (2017). doi 10.1007/s10103-017-2291-xCrossRefGoogle Scholar
  39. 39.
    Ribeiro A. C. Figueiredo, C. Kurachi, and V. S. Bagnato, Caries Res. 39, 393 (2005). doi 10.1159/000086846CrossRefGoogle Scholar
  40. 40.
    P. V. Seredin, D. L. Goloshchapov, T. Prutskij, and Y. A. Ippolitov, Results Phys. 7, 1086 (2017). doi 10.1016/j.rinp.2017.02.025Google Scholar
  41. 41.
    A. Rygula, K. Majzner, K. M. Marzec, A. Kaczor, M. Pilarczyk, and M. Baranska, J. Raman Spectrosc. 44, 1061 (2013). doi 10.1002/jrs.4335ADSCrossRefGoogle Scholar
  42. 42.
    F. Shakibaie, R. George, and L. J. Walsh, Int. J. Dent. Clin. 3, 38 (2011).Google Scholar
  43. 43.
    D. Matošević, Z. Tarle, S. Miljanić, Z. Meić, L. Pich-ler, and G. Pichler, Acta Stomatol. Croat. 44, 82 (2010).Google Scholar
  44. 44.
    P. V. Seredin, D. L. Goloshchapov, V. M. Kashkarov, Y. A. Ippolitov, and T. Prutskij, Results Phys. 6, 447 (2016). doi 10.1016/j.rinp.2016.08.033Google Scholar
  45. 45.
    D. L. Goloshchapov, P. V. Seredin, D. A. Minakov, and E. P. Domashevskaya, Opt. Spectrosc. 124, 187 (2018). doi 10.1134/S0030400X18020066CrossRefGoogle Scholar
  46. 46.
    P. A. Mosier-Boss, Biosensors 7, 51 (2017). doi 10.3390/bios7040051CrossRefGoogle Scholar
  47. 47.
    T. T. Liu, Y. H. Lin, C. S. Hung, T. J. Liu, Y. Chen, and Y. C. Huang, PLOS One 4, e5470 (2009). doi 10.1371/journal.pone.0005470ADSCrossRefGoogle Scholar
  48. 48.
    L. Zeiri, B. V. Bronk, Y. Shabtai, J. Eichler, and S. Efrima, Appl. Spectrosc. 58, 33 (2004).ADSCrossRefGoogle Scholar
  49. 49.
    P. Candeloro, E. Grande, R. Raimondo, D. D. Mascolo, F. Gentile, and M. L. Coluccio, Analyst 138, 7331 (2013). doi 10.1039/C3AN01665JADSCrossRefGoogle Scholar
  50. 50.
    G. Zhu, X. Zhu, Q. Fan, and X. Wan, Spectrochim. Acta, A 78, 1187 (2011). doi 10.1016/j.saa.2010.12.079Google Scholar
  51. 51.
    F. Madzharova, Z. Heiner, M. Gühlke, and J. Kneipp, J. Phys. Chem. C 120, 15415 (2016). doi 10.1021/acs.jpcc.6b02753CrossRefGoogle Scholar
  52. 52.
    M. Sarkar and A. L. Verma, J. Raman Spectrosc. 17, 407 (1986). doi 10.1002/jrs.1250170506.12.079ADSCrossRefGoogle Scholar
  53. 53.
    M. Aydin and D. L. Akins, in Applications of Molecular Spectroscopy to Current Research in the Chemical and Biological Sciences, Ed. by M. Stauffer (IntechOpen, Rijeka, 2016). doi 10.5772/64582Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • P. V. Seredin
    • 1
    Email author
  • D. L. Goloshchapov
    • 1
  • T. Prutskij
    • 2
  • Yu. A. Ippolitov
    • 3
  1. 1.Voronezh State UniversityVoronezhRussia
  2. 2.Instituto de Ciencias, Benemérita Universidad Autónoma de PueblaPueblaMexico
  3. 3.Burdenko Voronezh State Medical UniversityVoronezhRussia

Personalised recommendations