Advertisement

Optics and Spectroscopy

, Volume 125, Issue 5, pp 684–687 | Cite as

Optical Activity of Semiconductor Nanosprings

  • T. P. Pereziabova
  • A. S. Baimuratov
  • M. Yu. Leonov
  • A. V. Baranov
  • A. V. Fedorov
  • I. D. Rukhlenko
NANOPHOTONICS
  • 22 Downloads

Abstract

Nanosprings represent an advanced group of nanocrystals with chiral design, as well as much functionality due to their chemical and optical properties. In particular, their helical shape provides high optical activity. In this paper we suggest a quantum-mechanical theory to describe the optical activity of semiconductor nanosprings. Specific attention is given to the interaction of the left-handed and right-handed circular polarized light with nanosprings. The developed model shows that the spectrum of dissymmetry factor can be tuned by varying the geometric parameters of nanosprings.

Notes

ACKNOWLEDGMENTS

This work was funded by Grant MD-1294.2017.2 of the President of the Russian Federation for Young S-cientists. The authors also thank the Ministry of Education and Science of the Russian Federation for its Project 16.8981.2017/8.9, Scholarships SP‑2066.2016.1 and SP-1975.2016.1, and Grant 14.Y26.31.0028.

REFERENCES

  1. 1.
    A. Ben-Moshe, B. M. Maoz, A. O. Govorov, and G. Markovich, Chem. Soc. Rev. 42, 7028 (2013).CrossRefGoogle Scholar
  2. 2.
    Y. Wang, J. Xu, Y. Wang, and H. Chen, Chem. Soc. Rev. 42, 2930 (2013).CrossRefGoogle Scholar
  3. 3.
    Z. Ren and P.-X. Gao, Nanoscale 6, 9366 (2014).ADSCrossRefGoogle Scholar
  4. 4.
    A. I. Shlykov, A. S. Baimuratov, A. V. Baranov, A. V. Fedorov, and I. D. Rukhlenko, Opt. Express 25, 3811 (2017).ADSCrossRefGoogle Scholar
  5. 5.
    A. S. Baimuratov, A. I. Shlykov, W. Zhu, M. Y. Leo-nov, A. V. Baranov, A. V. Fedorov, and I. D. Rukhlenko, Opt. Lett. 42, 2423 (2017).CrossRefGoogle Scholar
  6. 6.
    J. Yeom, B. Yeom, H. Chan, K. W. Smith, S. Dominguez-Medina, J. H. Bahng, G. Zhao, W.-S. Chang, S.‑J. Chang, and A. Chuvilin, Nat. Mater. 14, 66 (2015).ADSCrossRefGoogle Scholar
  7. 7.
    R. Xie and M. Zhou, Chem. Mater. 27, 3055 (2015).CrossRefGoogle Scholar
  8. 8.
    A. Ben-Moshe, S. G. Wolf, M. B. Sadan, L. Houben, Z. Fan, A. O. Govorov, and G. Markovich, Nat. Commun. 5, 4302 (2014).ADSCrossRefGoogle Scholar
  9. 9.
    A. S. Baimuratov, I. D. Rukhlenko, R. E. Noskov, P. Ginzburg, Y. K. Gun’ko, A. V. Baranov, and A. V. Fedorov, Sci. Rep. 5, 14712 (2015).ADSCrossRefGoogle Scholar
  10. 10.
    A. S. Baimuratov, I. D. Rukhlenko, Y. K. Gun’ko, A. V. Baranov, and A. V. Fedorov, Nano Lett. 15, 1710 (2015).ADSCrossRefGoogle Scholar
  11. 11.
    N. V. Tepliakov, A. S. Baimuratov, A. V. Baranov, A. V. Fedorov, and I. D. Rukhlenko, J. Appl. Phys. 119, 194302 (2016).ADSCrossRefGoogle Scholar
  12. 12.
    A. S. Baimuratov, N. V. Tepliakov, Y. K. Gun’Ko, A. G. Shalkovskiy, A. V. Baranov, A. V. Fedorov, and I. D. Rukhlenko, Chirality 29, 159 (2017).CrossRefGoogle Scholar
  13. 13.
    I. D. Rukhlenko, A. S. Baimuratov, N. V. Tepliakov, A. V. Baranov, and A. V. Fedorov, Opt. Lett. 41, 2438 (2016).ADSCrossRefGoogle Scholar
  14. 14.
    N. V. Tepliakov, A. S. Baimuratov, Y. K. Gun’ko, A. V. Baranov, A. V. Fedorov, and I. D. Rukhlenko, Nanophotonics 5, 573 (2016).CrossRefGoogle Scholar
  15. 15.
    A. S. Baimuratov, T. P. Pereziabova, W. Zhu, M. Y. Leonov, A. V. Baranov, A. V. Fedorov, and I. D. Rukhlenko, Nano Lett. 17, 5514 (2017).ADSCrossRefGoogle Scholar
  16. 16.
    S. Srivastava, A. Santos, K. Critchley, K.-S. Kim, P. Podsiadlo, K. Sun, J. Lee, C. Xu, G. D. Lilly, and S. C. Glotzer, Science (Washington, DC, U. S.) 327 (5971), 1355 (2010).ADSCrossRefGoogle Scholar
  17. 17.
    X. Y. Kong and Z. L. Wang, Nano Lett. 3, 1625 (2003).ADSCrossRefGoogle Scholar
  18. 18.
    E. D. Sone, E. R. Zubarev and S. I. Stupp, Angew. Chem. Int. Ed. 41, 1705 (2002).CrossRefGoogle Scholar
  19. 19.
    A. S. Baimuratov, Y. K. Gun’ko, A. V. Baranov, A. V. Fedorov, and I. D. Rukhlenko, Sci. Rep. 6, 23321 (2016).ADSCrossRefGoogle Scholar
  20. 20.
    T. Khudiyev and M. Bayindir, Appl. Opt. 54, 8018 (2015).ADSCrossRefGoogle Scholar
  21. 21.
    P.-X. Gao and G. Liu, in Three-Dimensional Nanoarchitectures (Springer, Berlin, Heidelberg, 2011), p. 167.Google Scholar
  22. 22.
    C. N. R. Rao, A. Müller, and A. K. Cheetham, Nanomaterials Chemistry: Recent Developments and New Directions (Wiley, Chichester, 2007).CrossRefGoogle Scholar
  23. 23.
    M. V. Mukhina, V. G. Maslov, A. V. Baranov, A. V. Fe-dorov, A. O. Orlova, F. Purcell-Milton, J. Govan, and Y. K. Gun’ko, Nano Lett. 15, 2844 (2015).ADSCrossRefGoogle Scholar
  24. 24.
    F. Purcell-Milton, R. McKenna, L. Brennan, C. P. Cul-len, L. Guillemeney, N. V. Tepliakov, A. S. Baimuratov, I. D. Rukhlenko, T. S. Perova, and G. S. Duesberg, ACS Nano 12, 954 (2018).CrossRefGoogle Scholar
  25. 25.
    N. V. Tepliakov, I. A. Vovk, A. S. Baimuratov, M. Y. Leonov, A. V. Baranov, A. V. Fedorov, and I. D. Rukhlenko, J. Phys. Chem. Lett. 9, 2941 (2018).CrossRefGoogle Scholar
  26. 26.
    I. D. Rukhlenko, N. V. Tepliakov, A. S. Baimuratov, S. A. Andronaki, Y. K. Gun’ko, A. V. Baranov, and A. V. Fedorov, Sci. Rep. 6, 36884 (2016).ADSCrossRefGoogle Scholar
  27. 27.
    A. S. Baimuratov, N. V. Tepliakov, Y. K. Gun’ko, A. V. Baranov, A. V. Fedorov, and I. D. Rukhlenko, Sci. Rep. 6, 5 (2016).CrossRefGoogle Scholar
  28. 28.
    L. D. Barron, Molecular Light Scattering and Optical Activity (Cambridge Univ. Press, Cambridge, 2004).CrossRefGoogle Scholar
  29. 29.
    B. Ranjbar and P. Gill, Chem. Biol. Drug Des. 74, 101 (2009).CrossRefGoogle Scholar
  30. 30.
    H.-F. Zhang, C.-M. Wang, E. C. Buck, and L.-S. Wang, Nano Lett. 3, 577 (2003).ADSCrossRefGoogle Scholar
  31. 31.
    D. J. Bell, L. Dong, B. J. Nelson, M. Golling, L. Zhang, and D. Grützmacher, Nano Lett. 6, 725 (2006).ADSCrossRefGoogle Scholar
  32. 32.
    G. Shen, Y. Bando, C. Zhi, X. Yuan, T. Sekiguchi, and D. Golberg, Appl. Phys. Lett. 88, 243106 (2006).ADSCrossRefGoogle Scholar
  33. 33.
    D. Zhang, A. Alkhateeb, H. Han, H. Mahmood, D. N. McIlroy, and M. G. Norton, Nano Lett. 3, 983 (2003).ADSCrossRefGoogle Scholar
  34. 34.
    M. O. Katanaev, Phys. Usp. 48, 675 (2005).ADSCrossRefGoogle Scholar
  35. 35.
    A. S. Baimuratov, Y. K. Gun’ko, A. G. Shalkovskiy, A. V. Baranov, A. V. Fedorov, and I. D. Rukhlenko, Adv. Opt. Mater. 5, 1600982 (2017).CrossRefGoogle Scholar
  36. 36.
    N. V. Tepliakov, A. S. Baimuratov, I. A. Vovk, M. Y. Le-onov, A. V. Baranov, A. V. Fedorov, and I. D. Rukhlenko, ACS Nano 11, 7508 (2017).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • T. P. Pereziabova
    • 1
  • A. S. Baimuratov
    • 1
  • M. Yu. Leonov
    • 1
  • A. V. Baranov
    • 1
  • A. V. Fedorov
    • 1
  • I. D. Rukhlenko
    • 1
  1. 1.Information Optical Technology Centre, ITMO UniversitySt. PetersburgRussia

Personalised recommendations