Advertisement

Optics and Spectroscopy

, Volume 125, Issue 5, pp 711–715 | Cite as

Integration of β-NaYF4 Upconversion Nanoparticles into Polymers for Polymer Optical Fiber Applications

  • L. Neumann
  • F. Jakobs
  • S. Spelthann
  • D. Zaremba
  • S. Radunz
  • U. Resch-Genger
  • R. Evert
  • J. Kielhorn
  • W. Kowalsky
  • H.-H. JohannesEmail author
NANOPHOTONICS
  • 27 Downloads

Abstract

Producing active polymer optical fibers (POFs) is a key step towards new applications such as fluorescent fiber solar concentrators (FFSCs), sensors, contactless coupling devices, or fiber integrated light sources and lasers. Therefore, integration of fluorescent nanoparticles into the polymer matrix is necessary and becomes accessible via in situ polymerization. For optical applications, the polymer has to fulfill various requirements such as chemical and physical stability, optical transparency in the application-relevant spectral region as well as a good synthetic accessibility. A common material for these is poly(methyl methacrylate) (PMMA). The β-phase NaYF4:Yb3+,Er3+ upconversion nanoparticles (UCNP) were synthesized from the rare earth salts via thermal decomposition method in high-boiling point solvent 1-octadecene and capping agent oleic acid. Current results show hazy samples of the polymer with integrated nanoparticles made from monomer solution of methyl methacrylate. However, further optical tuning such as increasing the transparency of the bulk samples by changing the monomer solution to non-polar n-butyl methacrylate (nButMA) or cyclohexyl methacrylate (CHMA) or further optimization of the UCNP shell could lead to more suitable polymer bulk samples.

Notes

ACKNOWLEDGMENTS

The authors gratefully acknowledge S. Zellmer, B. Temel, and G. Garnweitner, Institute for Particle Technology, TU Braunschweig for XRD measurements, as well as L. Müller for the TEM images and DLS measurements. We gratefully acknowledge the German Federal Ministry for Economic Affairs and Energy (BMWi) for funding the LiLa-POF project (20E1510). We also acknowledge the Lower Saxony Ministry for Science and Culture (MWK) for funding the Quantum- and Nanometrology (QUANOMET) project and the state of Lower Saxony and the European Union for funding the ILANA project (EFRE-SER 2014-2020, 85003655) as part of the LaPOF research network.

REFERENCES

  1. 1.
    I. Parola, D. Zaremba, R. Evert, J. Kielhorn, F. Jakobs, M. A. Illarramendi, J. Zubia, W. Kowalsky, and H.‑H. Johannes, Sol. Energy Mater. Sol. Cells 178, 20 (2018).CrossRefGoogle Scholar
  2. 2.
    D. Gallego and H. Lamela, Opt. Lett. 34, 1807 (2009).ADSCrossRefGoogle Scholar
  3. 3.
    C. S. J. Leitão, P. F. da Costa Antunes, J. A. M. Bastos, J. de Lemos Pinto, and P. S. de Brito André, IEEE Sensors J. 15, 14 (2015).ADSCrossRefGoogle Scholar
  4. 4.
    I. García, J. Zubia, G. Durana, G. Aldabaldetreku, M. A. Illarramendi, and J. Villatoro, Sensors 15, 15494 (2015).CrossRefGoogle Scholar
  5. 5.
    K. W. Krämer, D. Biner, G. Frei, H. U. Güdel, M. P. Hehlen, and S. R. Lüthi, Chem. Mater. 16, 1255 (2004).CrossRefGoogle Scholar
  6. 6.
    S. Heer, O. Lehmann, M. Haase, and H.-U. Güdel, Angew. Chem. Int. Ed. 42, 3179 (2003).CrossRefGoogle Scholar
  7. 7.
    L. Wang, R. Yan, Z. Huo, L. Wang, J. Zeng, J. Bao, X. Wang, Q. Peng, and Y. Li, Angew. Chem. Int. Ed. 44, 6054 (2005).CrossRefGoogle Scholar
  8. 8.
    Y. I. Park, J. H. Kim, K. T. Lee, K.-S. Jeon, H. B. Na, J. H. Yu, H. M. Kim, N. Lee, S. H. Choi, S.-I. Baok, H. Kim, S. P. Park, B.-J. Park, Y. W. Kim, S. H. Lee, S.-Y. Yoon, I. C. Song, W. K. Moon, Y. D. Suh, and T. Hyeon, Adv. Mater. 21, 4467 (2009).CrossRefGoogle Scholar
  9. 9.
    Z. Li, Y. Zhang, and S. Jiang, Adv. Mater. 20, 4765 (2008).CrossRefGoogle Scholar
  10. 10.
    F. Wang, Y. Han, C. S. Lim, Y. Lu, J. Wang, J. Xu, H. Chen, C. Zhang, M. Hong, and X. Liu, Nature (London, U.K.) 463, 1061 (2010).ADSCrossRefGoogle Scholar
  11. 11.
    J. Lee, V. C. Sundar, J. R. Heine, M. G. Bawendi, and K. F. Jensen, Adv. Mater. 12, 1102 (2000).CrossRefGoogle Scholar
  12. 12.
    H. Sun, H. Zhang, J. Ju, J. Zhang, G. Qian, C. Wang, B. Yang, and Z. Y. Wang, Chem. Mater. 20, 6764 (2008).CrossRefGoogle Scholar
  13. 13.
    J. C. Boyer, N. J. J. Johnson, and F. C. J. M. van Veggel, Chem. Mater. 21, 2010 (2009).CrossRefGoogle Scholar
  14. 14.
    D. Zaremba, R. Evert, L. Neumann, R. Caspary, W. Kowalsky, H. Menzel, and H.-H. Johannes, Polymers 9 (2), 34 (2017).CrossRefGoogle Scholar
  15. 15.
    R. Kumar, M. Nyk, T. Y. Ohulchanskyy, C. A. Flask, and P. N. Prasad, Adv. Funct. Mater. 19, 853 (2009).CrossRefGoogle Scholar
  16. 16.
    R. Evert, D. Zaremba, F. Jakobs, R. Caspary, W. Kowalsky, and H.-H. Johannes, Polym. Int. (2018). doi 10.1002/pi.5603Google Scholar
  17. 17.
    R. Caspary, D. Zaremba, R. Evert, S. Schütz, S. Möhl, A. Cichosch, H.-H. Johannes, and W. Kowalsky, in Proceedings of the 16th International Conference on Transparent Optical Networks ICTON, Graz, Austria, 2014. doi 10.1109/ICTON.2014.6876464Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • L. Neumann
    • 1
  • F. Jakobs
    • 1
  • S. Spelthann
    • 2
  • D. Zaremba
    • 1
  • S. Radunz
    • 3
  • U. Resch-Genger
    • 3
  • R. Evert
    • 1
  • J. Kielhorn
    • 1
  • W. Kowalsky
    • 1
  • H.-H. Johannes
    • 1
    Email author
  1. 1.Technische Universität Braunschweig, Institut für Hochfrequenztechnik, Labor für ElektrooptikBraunschweigGermany
  2. 2.Leibniz Universität Hannover, Institut für QuantenoptikHannoverGermany
  3. 3.Bundesanstalt für Materialforschung und–prüfungBerlinGermany

Personalised recommendations