Advertisement

Optics and Spectroscopy

, Volume 125, Issue 5, pp 655–666 | Cite as

Scattering of Polarized and Natural Light by a Monolayer of Spherical Homogeneous Spatially Ordered Particles under Normal Illumination

  • N. A. LoikoEmail author
  • A. A. MiskevichEmail author
  • V. A. LoikoEmail author
PHYSICAL OPTICS
  • 19 Downloads

Abstract

Expressions for determining the optical characteristics of a monolayer of homogeneous monodisperse spherical particles under normal illumination by a plane electromagnetic wave with arbitrary polarization and nonpolarized radiation have been obtained. They are based on the quasi-crystalline approximation (QCA) of the theory of multiple scattering of waves (TMSW) and the multipole decomposition of fields and the tensor Green function in terms of the vector spherical wave functions. The influence of the polarization state of the incident wave on the angular structure of the radiation that is scattered by a partially ordered monolayer and a monolayer with a imperfect lattice has been considered.

Notes

ACKNOWLEDGMENTS

This work was supported by the Belarusian Republican Foundation for Fundamental Research, project F18RA-003.

We express our gratitude to employee of the Stepanov Institute of Physics of the National Academy of Sciences of Belarus A.V. Konkolovich for useful discussions.

REFERENCES

  1. 1.
    V. A. Loiko and A. A. Miskevich, Multiple Light Scattering, Radiative Transfer and Remote Sensing, Vol. 1 of Springer Series in Light Scattering, Ed. by A. Kokhanovsky (Springer, Berlin, 2018), p. 101.Google Scholar
  2. 2.
    T. Yamasaki and T. Tsutsui, Jpn. J. Appl. Phys. 38, 5916 (1999).ADSCrossRefGoogle Scholar
  3. 3.
    W. Sun, G. Videen, and B. Lin, Appl. Opt. 46, 1150 (2007).ADSCrossRefGoogle Scholar
  4. 4.
    B. Wang, Y. Jin, and S. He, J. Appl. Phys. 106, 014508 (2009).ADSCrossRefGoogle Scholar
  5. 5.
    B. K. Nayak, K. Sun, Ch. Rothenbach, and M. C. Gup-ta, Appl. Opt. 50, 2349 (2011).ADSCrossRefGoogle Scholar
  6. 6.
    G. Fujii, T. Matsumoto, and T. Takahashi, Opt. Express 20, 7300 (2012).ADSCrossRefGoogle Scholar
  7. 7.
    X. H. Wu, A. Yamilov, H. Noh, H. Cao, E. W. Seelig, and R. P. H. Chang, J. Opt. Soc. Am. B 21, 159 (2004).ADSCrossRefGoogle Scholar
  8. 8.
    Y. Rho, M. Wanit, J. Yeo, S. Hong, S. Han, J.-H. Choi, W.-H. Hong, D. Lee, and S. H. Ko, J. Phys. D: Appl. Phys. 46, 024006 (2013).ADSCrossRefGoogle Scholar
  9. 9.
    D. S. Wiersma, Nat. Photon. 7, 188 (2013).ADSCrossRefGoogle Scholar
  10. 10.
    I. Kim, D. S. Jeong, W. S. Lee, W. M. Kim, T.-S. Lee, D.-K. Lee, J.-H. Song, J.-K. Kim, and K.-S. Lee, Opt. Express 22, A1431 (2014).CrossRefGoogle Scholar
  11. 11.
    V. A. Loiko and A. A. Miskevich, Opt. Spectrosc. 115, 274 (2013).ADSCrossRefGoogle Scholar
  12. 12.
    A. A. Miskevich and V. A. Loiko, J. Quant. Spect. Rad. Transf. 136, 58 (2014).ADSCrossRefGoogle Scholar
  13. 13.
    A. A. Miskevich and V. A. Loiko, J. Quant. Spect. Rad. Transf. 146, 355 (2014).ADSCrossRefGoogle Scholar
  14. 14.
    A. A. Miskevich and V. A. Loiko, J. Quant. Spect. Rad. Transf. 167, 23 (2015).ADSCrossRefGoogle Scholar
  15. 15.
    V. A. Loiko and A. A. Miskevich, Opt. Spectrosc. 122, 799 (2017).ADSCrossRefGoogle Scholar
  16. 16.
    K. Ohtaka, J. Phys. C: Solid State Phys. 13, 667 (1980).ADSCrossRefGoogle Scholar
  17. 17.
    K. Ohtaka, Y. Suda, and S. Nagano, Phys. Rev. B 61, 5267 (2000).ADSCrossRefGoogle Scholar
  18. 18.
    A. Modinos, Phys. A (Amsterdam, Neth.) 141, 575 (1987).Google Scholar
  19. 19.
    N. Stefanou and A. Modinos, J. Phys.: Condens. Matter 3, 8135 (1991).ADSGoogle Scholar
  20. 20.
    N. Stefanou and A. Modinos, J. Phys.: Condens. Matter 5, 8859 (1993).ADSGoogle Scholar
  21. 21.
    L. L. Foldy, Phys. Rev. 67, 107 (1945).ADSMathSciNetCrossRefGoogle Scholar
  22. 22.
    M. Lax, Rev. Mod. Phys. 23, 287 (1951).ADSMathSciNetCrossRefGoogle Scholar
  23. 23.
    M. Lax, Phys. Rev. 85, 621 (1952).ADSCrossRefGoogle Scholar
  24. 24.
    V. Twersky, J. Appl. Phys. 23, 407 (1952).ADSMathSciNetCrossRefGoogle Scholar
  25. 25.
    V. Twersky, J. Math. Phys. 16, 633 (1975).ADSCrossRefGoogle Scholar
  26. 26.
    J. G. Fikioris and P. C. Waterman, J. Math. Phys. 5, 1413 (1964).ADSCrossRefGoogle Scholar
  27. 27.
    N. C. Mathur and K. C. Yeh, J. Math. Phys. 5, 1619 (1964).ADSCrossRefGoogle Scholar
  28. 28.
    V. V. Varadan and V. K. Varadan, Phys. Rev. D: Part. Fields 21, 388 (1980).ADSCrossRefGoogle Scholar
  29. 29.
    L. Tsang and J. A. Kong, Radio Sci. 18, 1260 (1983).ADSCrossRefGoogle Scholar
  30. 30.
    L. Tsang, C.-T. Chen, A. T. C. Chang, J. Guo, and K.‑H. Ding, Radio Sci. 35, 731 (2000).ADSCrossRefGoogle Scholar
  31. 31.
    K. M. Hong, J. Opt. Soc. Am. 70, 821 (1980).ADSCrossRefGoogle Scholar
  32. 32.
    D. Mackowski, Proc. R. Soc. London, Ser. A 433, 599 (1991).ADSMathSciNetCrossRefGoogle Scholar
  33. 33.
    Y. Xu, Appl. Opt. 34, 4573 (1995).ADSCrossRefGoogle Scholar
  34. 34.
    V. G. Vereshchagin, A. N. Ponyavina, and N. I. Sil’-vanovich, Dokl. Akad. Nauk BSSR 34, 123 (1990).Google Scholar
  35. 35.
    A. N. Ponyavina, S. M. Kachan, and N. I. Sil’vanovich, J. Opt. Soc. Am. B 21, 1866 (2004).ADSCrossRefGoogle Scholar
  36. 36.
    V. Loiko and V. Molochko, Part. Part. Syst. Charact. 13, 227 (1996).CrossRefGoogle Scholar
  37. 37.
    V. A. Loiko, V. P. Dick, and A. P. Ivanov, J. Opt. Soc. Am. A 17, 2040 (2000).ADSCrossRefGoogle Scholar
  38. 38.
    V. A. Loiko and A. A. Miskevich, Appl. Opt. 44, 3759 (2005).ADSCrossRefGoogle Scholar
  39. 39.
    V. A. Loiko and A. A. Miskevich, Opt. Spectrosc. 98, 61 (2005).ADSCrossRefGoogle Scholar
  40. 40.
    M. I. Mishchenko, L. Liu, D. W. Mackowski, B. Cairns, and G. Videen, Opt. Express 15, 2822 (2007).ADSCrossRefGoogle Scholar
  41. 41.
    M. I. Mishchenko, J. M. Dlugach, and D. W. Mackowski, J. Opt. Soc. Am. A 33, 2144 (2018).ADSCrossRefGoogle Scholar
  42. 42.
    Y. Okada and A. A. Kokhanovsky, J. Quant. Spectr. Rad. Transf. 110, 902 (2009).ADSCrossRefGoogle Scholar
  43. 43.
    A. García-Valenzuela, E. Gutiérrez-Reyes, and R. Barrera, J. Opt. Soc. Am. A 29, 1161 (2012).ADSCrossRefGoogle Scholar
  44. 44.
    J. Ziman, Models of Disorder (Cambridge Univ. Press, Cambridge, 1979).Google Scholar
  45. 45.
    J. K. Percus and G. J. Yevick, Phys. Rev. 110, 1 (1958).ADSMathSciNetCrossRefGoogle Scholar
  46. 46.
    A. A. Miskevich and V. A. Loiko, J. Quant. Spectrosc. Rad. Transf. 112, 1082 (2011).ADSCrossRefGoogle Scholar
  47. 47.
    A. A. Miskevich and V. A. Loiko, J. Exp. Theor. Phys. 113, 1 (2011).ADSCrossRefGoogle Scholar
  48. 48.
    A. A. Miskevich and V. A. Loiko, Nanosyst.: Phys., Chem., Math. 4, 778 (2013).Google Scholar
  49. 49.
    A. A. Miskevich and V. A. Loiko, J. Exp. Theor. Phys. 119, 211 (2014).CrossRefGoogle Scholar
  50. 50.
    A. A. Miskevich and V. A. Loiko, J. Quant. Spectrosc. Rad. Transf. 151, 260 (2015).ADSCrossRefGoogle Scholar
  51. 51.
    N. A. Loiko, A. A. Miskevich, and V. A. Loiko, J. Opt. Soc. Am. A 35, 108 (2018).ADSCrossRefGoogle Scholar
  52. 52.
    N. A. Loiko, A. A. Miskevich, and V. A. Loiko, J. Exp. Theor. Phys. 126, 159 (2018).CrossRefGoogle Scholar
  53. 53.
    A. P. Ivanov, A. V. Loiko, and V. P. Dik, Light Propagation in Densely-Packed Dispersed Media (Nauka Tekhnika, Minsk, 1988) [in Russian].Google Scholar
  54. 54.
    P. M. Morse and H. Feshbach, Methods of Theoretical Physics (McGraw-Hill, New York, 1953).zbMATHGoogle Scholar
  55. 55.
    V. A. Babenko, L. G. Astafyeva, and V. N. Kuzmin, Electromagnetic Scattering in Disperse Media: Inhomogeneous and Anisotropic Particles (Springer, Berlin, 2003).Google Scholar
  56. 56.
    M. I. Mishchenko, L. D. Travis, and A. A. Lacis, Scattering, Absorption, and Emission of Light by Small Particles (Cambridge Univ. Press, Cambridge, 2002).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.B.I. Stepanov Institute of Physics of the Academy of Sciences of BelarusMinskBelarus

Personalised recommendations