Advertisement

Optics and Spectroscopy

, Volume 125, Issue 5, pp 698–702 | Cite as

Magnetic Circular Dichroism in 2D Colloidal Semiconductor Nanocrystals

  • Y. A. GromovaEmail author
  • M. A. Miropoltsev
  • S. A. Cherevkov
  • V. G. Maslov
  • A. V. Baranov
  • A. V. Fedorov
NANOPHOTONICS
  • 32 Downloads

Abstract

Magnetic circular dichroism (MCD) spectra were measured for colloidal CdSe/CdS core–wing nanoplatelets (NPLs). MCD spectra of CdSe cores demonstrate well resolved features which could be attributed to excitonic transitions from heavy hole, light hole and split-off sublevels. A1/D0, B0/D0 MCD characteristic terms were determined. The values of A1/D0, B0/D0 terms have no dependence on NPL thickness and are very close to the corresponding values in organic molecules.

Notes

ACKNOWLEDGMENTS

This work was funded by RFBR Project 17-52-50004. Y.A.G. and S.A.C. acknowledge the Ministry of Education and Science of the Russian Federation for support via the Scholarships of the President of the Russian Federation for Young Scientists and Graduate Students.

REFERENCES

  1. 1.
    T. K. Kormilina, S. A. Cherevkov, A. V. Fedorov, and A. V. Baranov, Small 13, 1702300 (2017).CrossRefGoogle Scholar
  2. 2.
    S. Ithurria, M. Tessier, B. Mahler, R. Lobo, B. Dubertret, and A. L. Efros, Nat. Mater. 10, 936 (2011).ADSCrossRefGoogle Scholar
  3. 3.
    M. D. Tessier, C. Javaux, I. Maksimovic, V. Loriette, and B. Dubertret, ACS Nano 6, 6751 (2012).CrossRefGoogle Scholar
  4. 4.
    S. Cherevkov, A. Fedorov, M. Artemyev, A. Prudnikau, and A. Baranov, Phys. Rev. B 88, 041303 (2013).ADSCrossRefGoogle Scholar
  5. 5.
    S. Ithurria, G. Bousquet, and B. Dubertret, J. Am. Chem. Soc. 133, 3070 (2011).CrossRefGoogle Scholar
  6. 6.
    C. Bouet, B. Mahler, B. Nadal, B. Abecassis, M. D. Tes-sier, S. Ithurria, X. Xu, and B. Dubertret, Chem. Mater. 25, 639 (2013).CrossRefGoogle Scholar
  7. 7.
    B. Mahler, B. Nadal, C. Bouet, G. Patriarche, and B. Dubertret, J. Am. Chem. Soc. 134, 18591 (2012).CrossRefGoogle Scholar
  8. 8.
    A. Prudnikau, A. Chuvilin, and M. Artemyev, J. Am. Chem. Soc. 135, 14476 (2013).CrossRefGoogle Scholar
  9. 9.
    P. Stephens, J. Chem. Phys. 52, 3489 (1970).ADSCrossRefGoogle Scholar
  10. 10.
    E. I. Solomon, E. G. Pavel, K. E. Loeb, and C. Campochiaro, Coord. Chem. Rev. 144, 369 (1995).CrossRefGoogle Scholar
  11. 11.
    P. Stephens, Adv. Chem. Phys. 35, 197 (1976).Google Scholar
  12. 12.
    P. Stephens, P. Schatz, A. Ritchie, and A. McCaffery, J. Chem. Phys. 48, 132 (1968).ADSCrossRefGoogle Scholar
  13. 13.
    P. Zandstra, D. Scholtens, and R. Koning, J. Chem. Phys. 57, 3821 (1972).ADSCrossRefGoogle Scholar
  14. 14.
    A. Kaito, T. Nozawa, T. Yamamoto, M. Hatano, and Y. Orii, Chem. Phys. Lett. 52, 154 (1977).ADSCrossRefGoogle Scholar
  15. 15.
    M. Kuno, M. Nirmal, M. Bawendi, A. Efros, and M. Rosen, J. Chem. Phys. 108, 4242 (1998).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • Y. A. Gromova
    • 1
    Email author
  • M. A. Miropoltsev
    • 1
  • S. A. Cherevkov
    • 1
  • V. G. Maslov
    • 1
  • A. V. Baranov
    • 1
  • A. V. Fedorov
    • 1
  1. 1.ITMO UniversitySt. PetersburgRussia

Personalised recommendations