Advertisement

Optics and Spectroscopy

, Volume 125, Issue 5, pp 735–742 | Cite as

Plasmon–Exciton Interaction in Planar Nanostructures with Quantum Dots

  • T. M. Chmereva
  • M. G. Kucherenko
  • D. A. Kislov
  • V. M. Nalbandyan
NANOPHOTONICS
  • 30 Downloads

Abstract

The weak and strong coupling regimes of quantum dots with surface plasmons in a planar nanostructure have been studied theoretically. The rates of nonradiative energy transfer from a quantum dot to a conducting substrate and dispersion dependences of hybrid plasmon–exciton states have been calculated for different values of the parameters of the system under consideration. It has been shown that the energy transfer rates for an interband transition of an electron and for a transition of quantum dots from the exciton to the ground state can significantly exceed the rate of radiative electron–hole recombination. It has been found that, under certain conditions, the Rabi splitting can reach a value of 100 meV or greater.

Notes

REFERENCES

  1. 1.
    E. Cao, W. Lin, M. Sun, W. Liang, and Y. Song, Nanophotonics 7, 145 (2018). doi 10.1515/nanoph-2017-0059CrossRefGoogle Scholar
  2. 2.
    S. Balci, C. Kocabas, S. Ates, E. Karademir, O. Salihoglu, and A. Aydinli, Phys. Rev. B 86, 235402 (2012). doi 10.1103/PhysRevB.86.235402ADSCrossRefGoogle Scholar
  3. 3.
    J. Bellessa, C. Symonds, J. Laverdant, J.-M. Benoit, J. C. Plenet, and S. Vignoli, Electronics 3, 303 (2014). doi 10.3390/electronics3020303CrossRefGoogle Scholar
  4. 4.
    T. K. Hakala, J. J. Toppari, A. Kuzyk, M. Pettersson, H. Tikkanen, H. Kunttu, and P. Torma, Phys. Rev. Lett. 103, 053602 (2009). doi 10.1103/PhysRevLett.103.053602ADSCrossRefGoogle Scholar
  5. 5.
    D. E. Gomez, K. C. Vernon, P. Mulvaney, and T. J. Da-vis, Nano Lett. 10, 274 (2010). doi 10.1021/nl903455zADSCrossRefGoogle Scholar
  6. 6.
    P. Torma and W. L. Barnes, Rep. Prog. Phys. 78, 013901 (2015). doi 10.1088/0034-4885/78/1/013901ADSCrossRefGoogle Scholar
  7. 7.
    A. Gonzalez-Tudela, P. A. Huidobro, L. Martin-Moreno, C. Tejedor, and F. J. García-Vidal, Phys. Rev. Lett. 110, 126801 (2013). doi 10.1103/PhysRevLett.110.126801ADSCrossRefGoogle Scholar
  8. 8.
    V. M. Agranovich, M. Litinskaia, and D. G. Lidzey, Phys. Rev. B 67, 085311 (2003). doi 10.1103/PhysRevBGoogle Scholar
  9. 9.
    Yu. I. Goliney, V. I. Sugakov, L. Valkunas, and G. V. Vertsimakha, Chem. Phys. 404, 116 (2012). doi 10.1016/j.chemphys.2012.03.011CrossRefGoogle Scholar
  10. 10.
    J. Dong, Z. Zhang, H. Zheng, and M. Sun, Nanophotonics 4, 472 (2015). doi 10.1515/nanoph-2015-0028CrossRefGoogle Scholar
  11. 11.
    A. V. Akimov, A. Mukherjee, C. L. Yu, E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lu-kin, Nature (London, U. K.) 450, 402 (2007). doi 10.1038/nature06230ADSCrossRefGoogle Scholar
  12. 12.
    D. Jankovski, P. Bojarski, P. Kwiek, and S. Rangelova-Jankovska, Chem. Phys. 373, 238 (2010). doi 10.1016/j.chemphys.2010.05.016CrossRefGoogle Scholar
  13. 13.
    A. V. Fedorov, I. D. Rukhlenko, A. V. Baranov, and S. Yu. Kruchinin, Optical Properties of Semiconductor Quantum Dots (Nauka, St. Petersburg, 2011) [in Russian].Google Scholar
  14. 14.
    T. M. Chmereva, M. G. Kucherenko, and A. D. Dmitriev, Opt. Spectrosc. 118, 284 (2015). doi 10.1134/S0030400X15020058ADSCrossRefGoogle Scholar
  15. 15.
    I. M. Kupchak, D. V. Korbutyak, Yu. V. Kryuchenko, A. V. Sachenko, I. O. Sokolovskii, and O. M. Sreseli, Semiconductors 40, 94 (2006). doi 10.1134/S1063782606010179ADSCrossRefGoogle Scholar
  16. 16.
    A. Archambault, F. Marquier, J.-J. Greffet, and C. Ar-nold, Phys. Rev. B 82, 035411 (2010). doi 10.1103/PhysRevBGoogle Scholar
  17. 17.
    A. O. Govorov, J. Lee, and N. A. Kotov, Phys. Rev. B 76, 125308 (2007). doi 10.1103/PhysRevBGoogle Scholar
  18. 18.
    M. Buljan, I. Bogdanovic-Radovic, M. Karlusic, U. V. Desnica, N. Radic, M. Jaksic, K. Salamon, G. Drazic, S. Bernstorff, and V. Holy, Phys. Rev. B 84, 155312 (2011). doi 10.1103/PhysRevB.84.155312ADSCrossRefGoogle Scholar
  19. 19.
    A. S. Baimuratov, I. D. Rukhlenko, and A. V. Fedorov, Opt. Lett. 38, 2259 (2013). doi 10.1364/OL.38.002259ADSCrossRefGoogle Scholar
  20. 20.
    T. M. Chmereva, M. G. Kucherenko, and K. S. Kurmangaleev, Opt. Spectrosc. 120, 941 (2016). doi 10.1134/S0030400X16060060CrossRefGoogle Scholar
  21. 21.
    V. V. Klimov, Nanoplasmonics (Fizmatlit, Moscow, 2009; Pan Stanford, Singapore, 2011).Google Scholar
  22. 22.
    S. V. Karpov and S. V. Mikushev, Phys. Solid State 52, 1750 (2010). doi 10.1134/S1063783410080287ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • T. M. Chmereva
    • 1
  • M. G. Kucherenko
    • 1
  • D. A. Kislov
    • 1
  • V. M. Nalbandyan
    • 1
  1. 1.Orenburg State UniversityOrenburgRussia

Personalised recommendations