Advertisement

Optics and Spectroscopy

, Volume 125, Issue 5, pp 646–654 | Cite as

Structure and Lattice Dynamics of RE3Al5O12 (RE = Gd–Lu, Y) Rare-Earth Garnets: Ab Initio Calculation

  • V. A. ChernyshevEmail author
  • A. V. Serdtsev
SPECTROSCOPY OF CONDENSED STATES
  • 16 Downloads

Abstract

Rare-earth garnets with the general formula RE3Al5O12 (RE = La–Lu, Y) are investigated in the MO LCAO approximation. The phonon spectrum of Y3Al5O12 at the Γ point is calculated. Fundamental vibrations in the structure of Y3Al5O12 are assigned based on an analysis of ab initio calculated displacement vectors. The elastic constants of the RE3Al5O12 crystals are determined. Calculations are performed in terms of the density functional theory. The need to use hybrid functionals, which take into account the contribution of the nonlocal exchange into the Hartree–Fock formalism, is shown. The description of inner shells of the rare-earth ion down to 4f inclusive by a pseudopotential (4f-in-core) is shown to ensure significant reducing the computer cost, with the description accuracy of the structure and the lattice dynamics being preserved. The CRYSTAL program, intended for ab initio calculations of periodic structures, is used.

Notes

ACKNOWLEDGMENTS

This work was supported by the Ministry of Education and Science of the Russian Federation, project no. 3.9534.2017/8.9.

REFERENCES

  1. 1.
    A. Speghini, F. Piccinelli, and M. Bettinelli, Opt. Mater. 33, 247 (2011). https://doi.org/ doi 10.1016/j.optmat.2010.10.039ADSCrossRefGoogle Scholar
  2. 2.
    S. Nishiura, S. Tanabe, K. Fujioka, and Y. Fujimoto, Opt. Mater. 33, 688 (2011). doi 10.1016/j.optmat.2010.06.005ADSCrossRefGoogle Scholar
  3. 3.
    M. J. Upasani, Adv. Ceram. 5, 344 (2016). doi 10.1007/s40145-016-0208-yCrossRefGoogle Scholar
  4. 4.
    V. Monteseguro, P. Rodriguez-Hernandez, and A. J. Munoz, Appl. Phys. 118, 245902 (2015). doi 10.1063/1.4938193CrossRefGoogle Scholar
  5. 5.
    A. V. Bandura, R. A. Evarestov, and Y. F. Zhukovskii, R. Soc. Chem. Adv. 5, 24115 (2015). doi 10.1039/C5RA00306GGoogle Scholar
  6. 6.
    R. Dovesi, R. Orlando, A. Erba, A. Zicovich, C. M. Wilson, B. Civalleri, S. Casassa, L. Maschio, M. Ferrabone, M. de la Pierre, P. D’Arco, Y. Noel, M. Causa, M. Rerat, and B. Kirtman, Int. J. Quant. Chem. 114, 1287 (2014). doi 10.1002/qua.24658CrossRefGoogle Scholar
  7. 7.
    E. Heifets, E. A. Kotomin, A. A. Bagaturyants, and J. J. Maier, Phys. Chem. Lett. 6, 2847 (2015). doi 10.1021/acs.jpclett.5b01071CrossRefGoogle Scholar
  8. 8.
    M. D. Towler, N. L. Allan, N. M. Harrison, V. R. Sa-unders, W. C. Mackrodt, and E. Apra, Phys. Rev. B 50, 5041 (1994). doi 10.1103/PhysRevBGoogle Scholar
  9. 9.
    CRYSTAL Program. http://www.crystal.unito.it/index.php.Google Scholar
  10. 10.
    Energy-Consistent Pseudopotentials of the Stuttgart. http://www.tc.uni-koeln.de/PP/clickpse.en.html.Google Scholar
  11. 11.
    D. Andrae, U. Häußermann, M. Dolg, H. Stoll, and H. Preuß, Theor. Chim. Acta 77, 123 (1990).CrossRefGoogle Scholar
  12. 12.
    J. M. L. Martin and A. Sundermann, J. Chem. Phys. 114, 3408 (2001). doi 10.1063/1.1337864ADSCrossRefGoogle Scholar
  13. 13.
    M. Dolg, Theor. Chim. Acta 75, 173 (1989).CrossRefGoogle Scholar
  14. 14.
    J. Yang and M. Dolg, Theor. Chim. Acta 113, 212 (2005). doi 10.1007/s00214-005-0629-0CrossRefGoogle Scholar
  15. 15.
    A. Weigand, X. Cao, J. Yang, and M. Dolg, Theor. Chem. Acta 126, 117 (2010).CrossRefGoogle Scholar
  16. 16.
    F. Euler and J. A. Bruce, Acta Crystallogr. 19, 971 (1965).CrossRefGoogle Scholar
  17. 17.
    M. Kirm, A. Lushchik, Ch. Lushchik, and G. Zimmerer, in Physics and Chemistry of Luminescent Materials, Ed. by C. Ronda, L. E. Shea, and A. M. Srivastava, The Electrochemical Society Proceedings Series (Electrochem. Soc., Pennington, NJ, 2000), p. 113.Google Scholar
  18. 18.
    A. V. Arbuznikov, J. Struct. Chem. 48, S1 (2007).CrossRefGoogle Scholar
  19. 19.
    A. D. Becke, J. Chem. Phys. 98, 5648 (1993). doi 10.1063/1.464913ADSCrossRefGoogle Scholar
  20. 20.
    V. Chernyshev, V. Petrov, A. Nikiforov, and D. Zaki-ryanov, AIP Conf. Proc. 1694, 030004 (2015). doi 10.1063/1.4937248CrossRefGoogle Scholar
  21. 21.
    V. A. Chernyshev, A. E. Nikiforov, V. P. Petrov, A. V. Serdtsev, M. A. Kaschenko, and S. A. Klimin, Phys. Solid State 58, 1642 (2016). doi 10.1134/S1063783416080096ADSCrossRefGoogle Scholar
  22. 22.
    V. A. Chernyshev, V. P. Petrov, and A. E. Nikiforov, Phys. Solid State 57, 996 (2015). doi 10.1134/S1063783415050078ADSCrossRefGoogle Scholar
  23. 23.
    E. G. Spencer, R. T. Denton, T. B. Bateman, W. B. Snow, and L. G. van Uitert, J. Appl. Phys. 34, 3059 (1963). doi 10.1063/1.1729120ADSCrossRefGoogle Scholar
  24. 24.
    Y. N. Xu and W. Y. Ching, Phys. Rev. B 59, 10530 (1999). doi 10.1103/PhysRevB.59.10530ADSCrossRefGoogle Scholar
  25. 25.
    T. Tomiki, Y. Ganaha, T. Shikenbaru, T. Futemma, M. Yuri, Y. Aiura, H. Fukutani, H. Kato, J. Tamashiro, T. Miyahara, and A. Yonesu, J. Phys. Soc. Jpn. 62, 1388 (1993). doi 10.1143/JPSJ.62.1388ADSCrossRefGoogle Scholar
  26. 26.
    A. M. Hofmeister and K. R. Campbell, J. Appl. Phys. 72, 638 (1992). doi 10.1063/1/351846ADSCrossRefGoogle Scholar
  27. 27.
    S. Kostic, Z. Z. Lazarevic, V. Radojevic, A. Milutinovic, M. Romcevic, N. Z. Romcevic, and A. Valcic, Mater. Res. Bull. 63, 80 (2015). doi 10.1016/j.materresbull.2014.11.033CrossRefGoogle Scholar
  28. 28.
    J. P. Hurrell, S. P. S. Porto, I. F. Chang, S. S. Mitra, and R. P. Bauman, Phys. Rev. 173, 851 (1968). doi 10.1103/PhysRev.173.851ADSCrossRefGoogle Scholar
  29. 29.
    Jmol: An Open-Source Browser-Based HTML5 Viewer and Stand-Alone Java Viewer for Chemical Structures in 3D. http://www.jmol.org/.Google Scholar
  30. 30.
    J. Arvanitidis, K. Papagelis, D. Christofilos, H. Ki-mura, G. A. Kourouklis, and S. Ves, Phys. Status Solidi B 241, 3149 (2004). doi 10.1002/pssb.200405230ADSCrossRefGoogle Scholar
  31. 31.
    K. Papagelis, G. Kanellis, S. Ves, and G. A. Kourouklis, Phys. Status Solidi B 233, 134 (2002). doi 10.1002/1521-3951(200209)233:1<134::AID-PSSB134>3.0.CO;2-ZADSCrossRefGoogle Scholar
  32. 32.
    O. Scit, E. Garskaite, and A. Kareiva, in Proceedings of the International Conference on Nanomaterials: Applications and Properties, 2012, Vol. 1, p. 01PCN14-1.Google Scholar
  33. 33.
    Z. Wu, E. Zhao, H. Xiang, X. Hao, X. Liu, and J. Meng, Phys. Rev. B 76, 054115 (2007). doi 10.1103/PhysRevB.76.054115ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Ural Federal UniversityYekaterinburgRussia

Personalised recommendations