Advertisement

Optics and Spectroscopy

, Volume 125, Issue 5, pp 667–672 | Cite as

Interaction of Phase-Modulated Femtosecond Pulses with an Optically Dense Quasi-Resonant Medium of Rubidium Vapors

  • S. N. Bagaev
  • A. A. Preobrazhenskaya
  • N. A. Timofeev
  • A. A. Pastor
  • I. B. Mekhov
  • I. A. ChekhoninEmail author
  • P. Yu. Serdobintsev
  • V. S. Egorov
  • M. A. Chekhonin
  • A. M. Mashko
QUANTUM OPTICS
  • 16 Downloads

Abstract

For the first time, it is demonstrated that the magnitude and sign of the effect of “spectral condensation” of a laser pulse at the resonant-transition frequency of a dense medium can be controlled by changing the driving-pulse parameters (chirp, pulse width, and pulse amplitude). In the process of this, importantly, the driving-pulse energy and spectrum remain unchanged. Direct time-resolved measurements revealed an oscillatory character of the induced superradiance of rubidium vapors representing a long train of decaying short pulses. The width and repetition rate of the pulses in the train are determined by atomic density N0 of the medium, while the width of an entire superradiance pulse (10 ps) is considerably larger than that of the driving laser pulse (50 fs).

Notes

ACKNOWLEDGMENTS

This work was supported by the Russian Science Foundation (project no. 17-19-01097) and a grant from St. Petersburg State University (no. 11.40.533.2017). Part of the experiments was carried out at the St. Petersburg State University Research Resource Center Physical Methods of Surface Investigation. I.B.M. is grateful to the Russian Foundation for Basic Research (grant no. 18-02-01095) for additional su-pport.

REFERENCES

  1. 1.
    J. C. Davis, M. R. Fetterman, W. S. Warren, and D. Goswami, J. Chem. Phys. 128, 154312 (2008).ADSCrossRefGoogle Scholar
  2. 2.
    A. Pusch, J. M. Hamm, and O. Hess, Phys. Rev. A 85, 043807 (2012).ADSCrossRefGoogle Scholar
  3. 3.
    J. K. Ranka, R. W. Schirmer, and A. L. Gaeta, Phys. Rev. A 57, R36 (1998).ADSCrossRefGoogle Scholar
  4. 4.
    N. Dudovich, B. Dayan, S. M. Faeder Gallagher, and Y. Silberberg, Phys. Rev. Lett. 86, 47 (2001).ADSCrossRefGoogle Scholar
  5. 5.
    N. Dudovich, D. Oron, and Y. Silberberg, Phys. Rev. Lett. 88, 123004 (2002).ADSCrossRefGoogle Scholar
  6. 6.
    J. E. Rothenberg, D. Grischkovsky, and A. C. Balant, Phys. Rev. Lett. 53, 552 (1984).ADSCrossRefGoogle Scholar
  7. 7.
    S. N. Bagaev, V. S. Egorov, A. A. Pastor, D. Yu. Preobrazhenskii, A. A. Preobrazhenskaya, P. Yu. Serdobintsev, I. A. Chekhonin, and M. A. Chekhonin, Opt. Spectrosc. 121, 391 (2016).ADSCrossRefGoogle Scholar
  8. 8.
    A. A. Preobrazhenskaia, A. A. Pastor, P. Yu. Serdobintsev, I. A. Chekhonin, and V. S. Egorov, J. Phys.: Conf. Ser. 1038, 012071 (2018).Google Scholar
  9. 9.
    S. N. Bagayev, R. M. Arkhipov, M. V. Arkhipov, V. S. Egorov, I. A. Chekhonin, and M. A. Chekhonin, J. Phys.: Conf. Ser. 917, 062028 (2017).Google Scholar
  10. 10.
    S. N. Bagayev, V. S. Egorov, I. B. Mekhov, P. V. Moroshkin, I. A. Chekhonin, E. M. Davliatchine, and E. Kindel, Phys. Rev. A 68, 043812 (2003).ADSCrossRefGoogle Scholar
  11. 11.
    V. S. Egorov, V. N. Lebedev, I. B. Mekhov, P. V. Moroshkin, I. A. Chekhonin, and S. N. Bagayev, Phys. Rev. A 69, 033804 (2004).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • S. N. Bagaev
    • 1
  • A. A. Preobrazhenskaya
    • 2
  • N. A. Timofeev
    • 2
  • A. A. Pastor
    • 2
  • I. B. Mekhov
    • 2
    • 3
    • 4
  • I. A. Chekhonin
    • 2
    Email author
  • P. Yu. Serdobintsev
    • 2
  • V. S. Egorov
    • 2
  • M. A. Chekhonin
    • 2
  • A. M. Mashko
    • 2
  1. 1.Institute of Laser Physics, Siberian Branch, Russian Academy of SciencesNovosibirskRussia
  2. 2.St. Petersburg State UniversitySt. PetersburgRussia
  3. 3.University of OxfordOxfordUnited Kingdom
  4. 4.University Paris-SaclayParisFrance

Personalised recommendations