Advertisement

Optics and Spectroscopy

, Volume 125, Issue 5, pp 601–608 | Cite as

Doppler Frequency Redistribution upon Coherent Photon Emission by Atoms in an Optically Dense Medium

  • M. N. Araslanova
  • N. I. KosarevEmail author
  • M. S. El’berg
SPECTROSCOPY AND PHYSICS OF ATOMS AND MOLECULES
  • 14 Downloads

Abstract

The problem of transfer of line radiation in sodium vapor under photoexcitation by laser radiation of a resonance line with wavelength λ = 589.6 nm is numerically solved. The influence of Doppler frequency shifts on photon emission coherent in the atomic reference system is taken into account in the formation of an emission line profile using the model of partial frequency redistribution. In the case of a small optical thickness of a medium τ0 ≤ 1, the Doppler frequency redistribution in the laboratory reference system yields higher intensity values in the emission line profile core in comparison with the model of complete frequency redistribution. For an optically dense medium, thermal motion of atoms leads to an increase of reabsorption in the emission line core, and intensity increases in the line wings as compared to the complete redistribution model. The dependence of the Holstein trapping factor on optical thickness is closer to the analytic dependence than the complete redistribution model. This is explained by the fact that the frequencies of emitted photons in the laboratory reference system fall into the spectral profile core, which increases the effects of resonance radiation trapping in a dense medium.

Notes

REFERENCES

  1. 1.
    D. Mihalas, Stellar Atmospheres (W. H. Freeman, New York, 1978).Google Scholar
  2. 2.
    A. Romberg and H.-J. Kunze, J. Quant. Spectrosc. Radiat. Transfer 39, 99 (1988).ADSCrossRefGoogle Scholar
  3. 3.
    N. I. Kosarev, Opt. Spectrosc. 102, 8 (2007).ADSCrossRefGoogle Scholar
  4. 4.
    N. I. Kosarev, Opt. Spectrosc. 102, 654 (2007).ADSCrossRefGoogle Scholar
  5. 5.
    N. I. Kosarev, Opt. Spectrosc. 104, 1 (2008).ADSCrossRefGoogle Scholar
  6. 6.
    N. I. Kosarev, J. Phys. B 41, 225401 (2008).ADSCrossRefGoogle Scholar
  7. 7a.
    T. Holstein, Phys. Rev. 72, 1212 (1947);ADSCrossRefGoogle Scholar
  8. 7b.
    Phys. Rev. 83, 1159 (1951).Google Scholar
  9. 8.
    E. M. Karlov, Lectures on Quantum Electronics (Moscow, 1983) [in Russian].Google Scholar
  10. 9.
    N. I. Kosarev, Mat. Model. 20 (3), 87 (2008).Google Scholar
  11. 10.
    M. N. Araslanova and N. I. Kosarev, in Simulation of Non-Equilibrium Systems, Proceedings of the 20th All-Russia Seminar (Inst. Vychisl. Modelir. SO RAN, Krasnoyarsk, 2017), p. 3.Google Scholar
  12. 11.
    M. N. Araslanova and N. I. Kosarev, in Simulation of Non-Equilibrium Systems, Proceedings of the 20th All-Russia Seminar (Inst. Vychisl. Modelir. SO RAN, Krasnoyarsk, 2017), p. 8.Google Scholar
  13. 12.
    N. I. Kosarev, Opt. Spectrosc. 101, 60 (2006).ADSCrossRefGoogle Scholar
  14. 13.
    N. I. Kosarev and I. M. Shkedov, Opt. Atmos. Okeana 6, 1298 (1993).Google Scholar
  15. 14.
    N. I. Kosarev and I. M. Shkedov, Opt. Atmos. Okeana 12, 30 (1999).Google Scholar
  16. 15.
    N. I. Kosarev and I. M. Shkedov, Opt. Atmos. Okeana 8, 1752 (1995).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • M. N. Araslanova
    • 1
  • N. I. Kosarev
    • 1
    Email author
  • M. S. El’berg
    • 1
  1. 1.Siberian Federal University, Institute of Non-Ferrous Metals and Materials ScienceKrasnoyarskRussia

Personalised recommendations