Advertisement

Optics and Spectroscopy

, Volume 125, Issue 3, pp 372–378 | Cite as

Mechanisms of ZnO Luminescence in the Visible Spectral Region

  • P. A. Rodnyi
  • K. A. Chernenko
  • I. D. Venevtsev
Spectroscopy of Condensed States
  • 28 Downloads

Abstract

Existing models of zinc oxide luminescence in the visible spectral region are considered and comparatively analyzed. Experiments are performed with ceramics obtained from initial ZnO powder and ZnO powders annealed in vacuum (ZnO-vac) and in air (ZnO-air). The luminescence characteristics of the ceramics, namely, emission and excitation spectra, kinetics, and temperature stability, are studied. The ZnO-vac ceramics exhibits green luminescence caused by neutral oxygen vacancies. The luminescence of ZnO-air ceramics is shifted to the red and is presumably related to residual lithium impurity. The ceramics differ in the luminescence excitation spectra, time characteristics, and temperature stability.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. K. Meyer, H. Alves, D. M. Hofmann, et al., Phys. Status Solidi B 241, 231 (2004).ADSCrossRefGoogle Scholar
  2. 2.
    U. Ozgur, Ya. I. Alivov, C. Liu, et al., J. Appl. Phys. 98, 041301 (2005).ADSCrossRefGoogle Scholar
  3. 3.
    P. A. Rodnyi and I. V. Khoduk, Opt. Spectrosc. 111, 776 (2011).ADSCrossRefGoogle Scholar
  4. 4.
    M. R. Wagner, G. Callsen, J. S. Reparaz, et al., Phys. Rev. B 84, 035313 (2011).ADSCrossRefGoogle Scholar
  5. 5.
    R. Heinhold, A. Neiman, J. V. Kennedy, et al., Phys. Rev. B 95, 054120 (2017).ADSCrossRefGoogle Scholar
  6. 6.
    F. Oba, M. Choi, A. Togo, and I. Tanaka, Sci. Technol. Adv. Mater. 12, 034302 (2011).CrossRefGoogle Scholar
  7. 7.
    A. Janotti and C. G. van de Walle, Rep. Prog. Phys. 72, 126501 (2009).ADSCrossRefGoogle Scholar
  8. 8.
    E. D. Bourret-Courchesne, S. E. Derenzo, and M. J. Weber, Nucl. Instrum. Methods Phys. Res., Sect. A 601, 358 (2009).ADSCrossRefGoogle Scholar
  9. 9.
    M. Bugajski and W. Lewandowski, J. Appl. Phys. 57, 521 (1985).ADSCrossRefGoogle Scholar
  10. 10.
    A. F. Kohan, G. Ceder, D. Morgan, et al., Phys. Rev. B 61, 15019 (2000).ADSCrossRefGoogle Scholar
  11. 11.
    K. Vanheusden, W. L. Warren, C. H. Seager, et al., J. Appl. Phys. 79, 7983 (1996).ADSCrossRefGoogle Scholar
  12. 12.
    Q. X. Zhao, P. Klason, M. Willander, et al., Appl. Phys. Lett. 87, 211912 (2005).ADSCrossRefGoogle Scholar
  13. 13.
    D. C. Reynolds, D. C. Look, and B. Jogai, J. Appl. Phys. 89, 6189 (2001).ADSCrossRefGoogle Scholar
  14. 14.
    H. Chen, Sh. Gu, K. Tang, et al., J. Lumin. 131, 1189 (2011).CrossRefGoogle Scholar
  15. 15.
    B. Cao, W. Cai, and H. Zeng, Appl. Phys. Lett. 88, 161101 (2006).ADSCrossRefGoogle Scholar
  16. 16.
    T. Moe Berseth, B. G. Svenson, A. Yu. Kuznetsov, et al., Appl. Phys. Lett. 89, 262112 (2006).ADSCrossRefGoogle Scholar
  17. 17.
    P. Camarda, F. Messina, L. Vaccaro, et al., Phys. Chem. Chem. Phys. 18, 16237 (2016).CrossRefGoogle Scholar
  18. 18.
    C. Ton-That, L. Weston, and M. R. Phillips, Phys. Rev. B 86, 115205 (2012).ADSCrossRefGoogle Scholar
  19. 19.
    J. Ji, L. A. Boatner, and F. A. Selim, Appl. Phys. Lett. 105, 041102 (2014).ADSCrossRefGoogle Scholar
  20. 20.
    L. Grigorjeva, A. Zolotarjovs, S. Yu. Sokovnin, et al., Ceram. Int. 43, 6187 (2017).CrossRefGoogle Scholar
  21. 21.
    A. Janotti and Ch. G. van de Walle, Appl. Phys. Lett. 87, 122102 (2005).ADSCrossRefGoogle Scholar
  22. 22.
    F. Oba, A. Togo, I. Tanaka, J. Paier, and G. Kresse, Phys. Rev. B 77, 245202 (2008).ADSCrossRefGoogle Scholar
  23. 23.
    S. Lany and A. Zunger, Phys. Rev. B 81, 113201 (2010).ADSCrossRefGoogle Scholar
  24. 24.
    F. A. Selim, M. H. Weber, D. Solodovnikov, and K. G. Lynn, Phys. Rev. Lett. 99, 085502 (2007).ADSCrossRefGoogle Scholar
  25. 25.
    T. R. Paudel and W. R. L. Lambrecht, Phys. Rev. B 77, 205202 (2008).ADSCrossRefGoogle Scholar
  26. 26.
    L. S. Vlasenko, Appl. Magn. Reson. 39, 103 (2010).CrossRefGoogle Scholar
  27. 27.
    S. Vempati, J. Mitra, and P. Dawson, Nanoscale Res. Lett. 7, 470 (2012).ADSCrossRefGoogle Scholar
  28. 28.
    J. D. Ye, S. L. Gu, F. Qin, et al., Appl. Phys. A 81, 759 (2005).ADSCrossRefGoogle Scholar
  29. 29.
    H. S. Kang, J. S. Kang, J. W. Kim, and S. Y. Lee, J. Appl. Phys. 95, 1246 (2004).ADSCrossRefGoogle Scholar
  30. 30.
    K. Bandopadhyay and J. Mitra, RSC Adv. 5, 23540 (2015).CrossRefGoogle Scholar
  31. 31.
    F. Kayaci, S. Vempati, I. Donmez, et al., Nanoscale 6, 10224 (2014).ADSCrossRefGoogle Scholar
  32. 32.
    C. H. Ahn, Y. Y. Kim, D. C. Kim, et al., J. Appl. Phys. 105, 013502 (2009).ADSCrossRefGoogle Scholar
  33. 33.
    K. Kodama and T. Uchino, J. Appl. Phys. 111, 093525 (2012).ADSCrossRefGoogle Scholar
  34. 34.
    K. Kodama and T. Uchino, J. Phys. Chem. C 118, 23977 (2014).CrossRefGoogle Scholar
  35. 35.
    B. Zhang, S. H. Wei, and A. Zunger, Phys. Rev. B 63, 075205 (2001).ADSCrossRefGoogle Scholar
  36. 36.
    L. S. Vlasenko and G. D. Watkins, Phys. Rev. B 71, 125210 (2005).ADSCrossRefGoogle Scholar
  37. 37.
    F. H. Leiter, H. R. Alves, A. Hofstaetter, et al., Phys. Status Solidi B 226, R4 (2001).Google Scholar
  38. 38.
    F. de Angelis and L. Armelao, Phys. Chem. Chem. Phys. 13, 467 (2011).CrossRefGoogle Scholar
  39. 39.
    J. Čížek, J. Valenta, P. Hruška, et al., Appl. Phys. Lett. 106, 251902 (2015).CrossRefGoogle Scholar
  40. 40.
    Y. Gong, T. Andelman, G. F. Neumark, et al., Nanoscale Res. Lett. 2, 297 (2007).ADSCrossRefGoogle Scholar
  41. 41.
    F. Gallino, G. Pacchioni, and C. di Valentin, J. Chem. Phys. 133, 144512 (2010).ADSCrossRefGoogle Scholar
  42. 42.
    R. Bhaskar, A. R. Lakshmanan, M. Sundarrajan, et al., Indian J. Pure Appl. Phys. 47, 772 (2009).Google Scholar
  43. 43.
    J. V. Foreman, J. G. Simmons, W. E. Baughman, et al., J. Appl. Phys. 113, 133513 (2013).ADSCrossRefGoogle Scholar
  44. 44.
    Ch. Drouilly, J.-M. Krafft, F. Averseng, et al., J. Phys. Chem. C 116, 21297 (2012).CrossRefGoogle Scholar
  45. 45.
    P. A. Rodnyi, K. A. Chernenko, A. Zolotarjovs, L. Grigorjeva, E. I. Gorokhova, and I. D. Venevtsev, Phys. Solid State 58, 2055 (2016).ADSCrossRefGoogle Scholar
  46. 46.
    P.-T. Hsieh, Y.-C. Chen, K.-S. Kao, and C.-M. Wang, Appl. Phys. A 90, 317 (2000).ADSCrossRefGoogle Scholar
  47. 47.
    E. I. Gorokhova, P. A. Rodnyi, E. P. Lokshin, K. P. Lott, G. B. Kunshina, K. A. Chernenko, G. V. Ananieva, S. B. Eron’ko, I. V. Khodyuk, O. G. Gromov, and E. A. Oreschenko, J. Opt. Technol. 78, 753 (2011).CrossRefGoogle Scholar
  48. 48.
    K. A. Chernenko, S. B. Mikhrin, H. Wieczorek, C. R. Ronda, and P. A. Rodnyi, Tech. Phys. Lett. 41, 971 (2015).ADSCrossRefGoogle Scholar
  49. 49.
    I. Kh. Akopyan, M. E. Labzovskaya, A. A. Lisachenko, B. V. Novikov, A. Yu. Serov, V. V. Titov, and N. G. Filosofov, Phys. Solid State 58, 1767 (2016).ADSCrossRefGoogle Scholar
  50. 50.
    M. Ghosh, R. S. Ningthoujam, R. K. Vatsa, et al., J. Appl. Phys. 110, 054309 (2011).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • P. A. Rodnyi
    • 1
  • K. A. Chernenko
    • 1
  • I. D. Venevtsev
    • 1
  1. 1.Peter the Great St. Petersburg Polytechnic UniversitySt. PetersburgRussia

Personalised recommendations