Advertisement

Optics and Spectroscopy

, Volume 125, Issue 3, pp 324–330 | Cite as

The Influence of Molecular Gas on the Apokamp Discharge Formation

  • V. S. Kuznetsov
  • E. A. Sosnin
  • V. A. Panarin
  • V. S. Skakun
  • V. F. Tarasenko
Spectroscopy and Physics of Atoms and Molecules
  • 6 Downloads

Abstract

Emission spectra of apokamp discharge plasma jets in CO2, Ar, Kr, N2, and their mixtures have been studied. It has been shown that the emission spectra of the Kr–N2 mixture contain N2 and \(\rm{N_2^+}\) bands, as well as Kr lines. The spectrum of the Ar–CO2 mixture is presented by bands of the Fox–Duffendack–Barker system and lines of the exited argon atom. In all gas media under study, the reduction of the molecular gas quantity leads to the transition from an apokampic discharge in the form of a diffusion jet developing from the current channel to a volume discharge with a strong transverse glowing. The experimental apparatus described in this work is proposed for use in laboratory investigations of spectral characteristics of transient luminous events observed in atmospheres of planets of the Solar System.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    X. Lu, G. V. Naidis, M. Laroussi, S. Reuter, D. B. Graves, and K. Ostrikov, Phys. Rep. 630 (4), 1 (2016). doi 10.1088/0963-0252/12/1/307ADSMathSciNetGoogle Scholar
  2. 2.
    J. Winter, R. Brandenburg, and K.-D. Weltmann, Plasma Sources Sci. Technol. 24, 064001 (2015). doi 10.1088/0963-0252/24/6/064001ADSCrossRefGoogle Scholar
  3. 3.
    J. Ehlbeck, U. Schnabel, M. Polak, J. Winter, T. von Woedtke, R. Brandenburg, T. Von Dem Hagen, and K.-D. Weltmann, J. Phys. D: Appl. Phys. 44, 013002 (2011). doi 10.1088/0022-3727/44/1/013002ADSCrossRefGoogle Scholar
  4. 4.
    Plasma for BioDecontamination, Medicine and Food Security, Vol. 17 of NATO Science for Peace and Security Ser. A: Chemistry and Biology, Ed. by Z. Machala, K. Hensel, and Yu. Akishev (Springer, Netherlands, 2012). doi 10.1007/978-94-007-2852-3Google Scholar
  5. 5.
    V. S. Skakun, V. A. Panarin, D. S. Pechenitsin, E. A. Sosnin, and V. F. Tarasenko, Russ. Phys. J. 59, 707 (2016).CrossRefGoogle Scholar
  6. 6.
    E. A. Sosnin, V. S. Skakun, V. A. Panarin, D. S. Pechenitsin, V. F. Tarasenko, and E. Kh. Baksht, JETP Lett. 103, 761 (2016).ADSCrossRefGoogle Scholar
  7. 7.
    E. A. Sosnin, V. A. Panarin, V. S. Skakun, E. Kh. Baksht, and V. F. Tarasenko, Eur. Phys. J. D 71 (2), 25 (2017). doi 10.1140/epjd/e2016-70466-0ADSCrossRefGoogle Scholar
  8. 8.
    E. A. Sosnin, V. A. Panarin, V. S. Skakun, V. F. Tarasenko, and V. S. Kuznetsov, Prikl. Fiz., No. 1, 21 (2017).Google Scholar
  9. 9.
    A. A. Panarin, V. S. Skakun, E. A. Sosnin, and V. F. Tarasenko, Opt. Spectrosc. 122, 168 (2017).ADSCrossRefGoogle Scholar
  10. 10.
    E. A. Sosnin, E. H. Baksht, V. A. Panarin, V. S. Skakun, and V. F. Tarasenko, JETP Lett. 105, 641 (2017). doi 10.1134/S0021364017100137ADSCrossRefGoogle Scholar
  11. 11.
    A. A. Radtsig and B. M. Smirnov, Handbook of Atomic and Molecular Physics (Atomizdat, Moscow, 1980) [in Russian].Google Scholar
  12. 12.
    Yu. Ralchenko, A. E. Kramida, J. Reader, and NIST ASD Team, NIST Atomic Spectra Database, Vers. 3.1.5 (Natl. Inst. Standards Technol., Gaithersburg, 2008). https://doi.org/physics.nist.gov/asd3.Google Scholar
  13. 13.
    E. M. van Veldhuizen and W. R. Rutgers, J. Phys. D: Appl. Phys. 35, 2169 (2002). doi PIIS0022-3727(02)33941-XADSCrossRefGoogle Scholar
  14. 14.
    J. T. Herron and D. S. Green, Plasma Chem. Plasma Process. 21, 459 (2001).CrossRefGoogle Scholar
  15. 15.
    A. Ya. Vul’, S. V. Kidalov, V. M. Milenin, N. A. Timofeev, and M. A. Khodorkovskii, Tech. Phys. Lett. 25, 321 (1999).ADSCrossRefGoogle Scholar
  16. 16.
    A. Sarani, N. Geyter, A. Yu. Nikiforov, R. Morent, C. Leys, J. Hubert, and F. Reniers, Surf. Coat. Technol. 206, 2226 (2012).CrossRefGoogle Scholar
  17. 17.
    H. Martinez, S. Perusquia, M. Villa, P. G. Reyes, F. B. Yousif, F. Castillo, and U. Contreras, Phys. Plasmas 24, 043508 (2017). doi 10.1063/1.4979995ADSCrossRefGoogle Scholar
  18. 18.
    R. Castell, E. J. Iglesias, and J. Ruiz-Camacho, Brazil. J. Phys. 34 (4B), 1734 (2004).Google Scholar
  19. 19.
    T. Czech, A. T. Sobczyk, and A. Jaworek, Eur. Phys. J. D 69, 223 (2015). doi 10.1140/epjd/e2015-60163-yADSCrossRefGoogle Scholar
  20. 20.
    K. Furuya, A. Matsuo, and T. Ogawa, J. Phys. B 35, 3077 (2002).ADSCrossRefGoogle Scholar
  21. 21.
    C. Dimopoulou, M. E. Galassi, R. Moshammer, R. D. Rivarola, D. Fischer, C. Höhr, and J. Ullrich, J. Phys. B 38, 3173 (3173).CrossRefGoogle Scholar
  22. 22.
    A. A. Panarin, V. S. Skakun, E. A. Sosnin, and V. F. Tarasenko, Opt. Atmos. Okeana 30, 243 (2017). doi 10.15372/AOO20170310CrossRefGoogle Scholar
  23. 23.
    E. A. Sosnin, G. V. Naidis, V. F. Tarasenko, V. S. Skakun, V. A. Panarin, and N. Yu. Babaeva, J. Exp. Theor. Phys. 98, 920 (2017). doi 10.1134/S1063776117100168ADSCrossRefGoogle Scholar
  24. 24.
    D. Siingh, R. P. Singh, S. Kumar, T. Dharmaraj, A. K. Singh, A. K. Singh, M. N. Patil, and S. Singh, J. Atmos. Solar-Terr. Phys. 134 (10), 78 (2015). doi 10.1016/j.jastp.2015.10.001ADSCrossRefGoogle Scholar
  25. 25.
    Y. Yair, Y. Takahashi, R. Yaniv, U. Ebert, and Y. Goto, J. Geophys. Res. 114, E09002 (2009). doi 10.1029/2008JE003311Google Scholar
  26. 26.
    D. D. Sentman, in Proceedings of the ISUAL Workshop, Natl. Chen-Kung Univ., Tainan City, Taiwan, 2004.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • V. S. Kuznetsov
    • 1
  • E. A. Sosnin
    • 1
    • 2
  • V. A. Panarin
    • 1
  • V. S. Skakun
    • 1
  • V. F. Tarasenko
    • 1
    • 2
  1. 1.Institute of High-Current Electronics, Siberian BranchRussian Academy of SciencesTomskRussia
  2. 2.Tomsk State UniversityTomskRussia

Personalised recommendations