Advertisement

Optics and Spectroscopy

, Volume 125, Issue 3, pp 311–316 | Cite as

The Use of Raman Spectroscopy and Methods of Quantum Chemistry for Assessing the Relative Concentration of Triglycerides of Oleic and Linoleic Acids in a Mixture of Olive Oil and Sunflower Seed Oil

  • K. V. Berezin
  • K. N. Dvoretskii
  • M. L. Chernavina
  • A. V. Novoselova
  • V. V. Nechaev
  • E. M. Antonova
  • I. T. Shagautdinova
  • A. M. Likhter
Spectroscopy and Physics of Atoms and Molecules
  • 2 Downloads

Abstract

The Raman spectra of five samples of sunflower seed oil and five samples of cold-pressed olive oil of various brands are recorded in the range of 500–2000 cm–1. Within the framework of the B3LYP/6-31G(d)/6-31G(d,p)/6-31+G(d,p)/6-311G(d)/6-311G(d, p)/6-311+G(d,p) methods, the structural models of eight fatty acids (oleic, linoleic, palmitic, stearic, α-linolenic, arachidonic, eicosapentaenoic, and docosahexaenoic) are constructed, and also within the framework of the B3LYP/6-31G(d) method, the structural models of triglycerides of the first four of the above acids are obtained. The vibrational wavenumbers and intensities in the IR and Raman spectra are calculated. The Raman spectra of olive oil and sunflower seed oil were simulated by using the supermolecular approach. We investigated the dependence of the relative intensity of the vibrational bands νexp = 1660 and 1445 cm–1 on the concentration of triglycerides in oils of oleic and linoleic acids and the dependence of the intensity of these bands on the degree of saturation of fatty acids. Experimental and empirical dependences are constructed to estimate the relative concentration of triglycerides of oleic and linoleic acids in a mixture of olive oil and sunflower seed oil. The applicability of the density functional theory together with the vibrational spectroscopy for the identification of mixtures of vegetable oils is discussed.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. C. Lopez-Diez, G. Bianchi, and R. Goodacre, J. Agric. Food Chem. 51, 6145 (2003). doi 10.1021/jf034493dCrossRefGoogle Scholar
  2. 2.
    R. M. El-Abassy, P. Donfack, and A. Materny, J. Raman Spectrosc. 40, 1284 (2009). doi 10.1002/jrs.2279ADSCrossRefGoogle Scholar
  3. 3.
    V. Baeten and R. Aparicio, Biotechnol. Agron. Soc. Environ. 4, 196 (2000).Google Scholar
  4. 4.
    X. Zhang, M. Zou, X. Qi, F. Liu, C. Zhang, and F. Yin, J. Raman Spectrosc. 42, 1784 (2011). doi 10.1002/jrs.2933ADSCrossRefGoogle Scholar
  5. 5.
    H. Yang, J. Irudayaraj, and M. M. Paradkar, Food Chem. 93, 25 (2005). doi 10.1016/j.foodchem. 2004.08.039CrossRefGoogle Scholar
  6. 6.
    B. Bernuy, M. Meurens, E. Mignolet, C. Turu, and Y. Larondelle, J. Agric. Food Chem. 57, 6524 (2009). doi 10.1021/jf9003237CrossRefGoogle Scholar
  7. 7.
    M. Meurens, V. Baeten, S. H. Yan, E. Mignolet, and Y. Larondelle, J. Agric. Food Chem. 53, 5831 (2005). doi 10.1021/jf0480795CrossRefGoogle Scholar
  8. 8.
    O. Abbas, J. A. Fernandez Pierna, R. Codony, C. von Holst, and V. Baeten, J. Mol. Struct. 924–926, 294 (2009). doi 10.1016/j.molstruc.2009.01.027Google Scholar
  9. 9.
    M. Motoyama, M. Ando, K. Sasaki, I. Nakajima, K. Chikuni, K. Aikawa, and H. O. Hamaguchi, Food Chem. 196, 411 (2016). doi 10.1016/j.foodchem. 2015.09.043CrossRefGoogle Scholar
  10. 10.
    R. M. El-Abassy, P. J. Eravuchira, P. Donfack, B. von der Kammer, and A. Materny, Vibrat. Spectrosc. 56, 3 (2011). doi 10.1016/j.vibspec.2010.07.001CrossRefGoogle Scholar
  11. 11.
    Codex Alimentarius. Fats, Oils and Related Products (Food Agricult. Organization, Rome, 2001).Google Scholar
  12. 12.
    K. V. Berezin, M. L. Chernavina, A. V. Novoselova, I. T. Shagautdinova, A. M. Likhter, and K. N. Dvoretskii, Opt. Spectrosc. 123, 495 (2017). doi 10.1134/S0030400X17090089ADSCrossRefGoogle Scholar
  13. 13.
  14. 14.
    M. J. Frisch, G. W. Trucks, H. B. Schlegel, et al., Gaussian03, Revision B.03 (Gaussian03 Inc., Pittsburgh PA, 2003).Google Scholar
  15. 15.
    A. B. Faifel’, K. V. Berezin, and V. V. Nechaev, in Problems of Optical Physics (Kolledzh, Saratov, 2003), p. 74 [in Russian].Google Scholar
  16. 16.
    K. V. Berezin, T. V. Krivokhizhina, and V. V. Nechaev, Opt. Spectrosc. 97, 530 (2004). doi 10.1134/1.1813693ADSCrossRefGoogle Scholar
  17. 17.
    K. V. Berezin, V. V. Nechaev, and T. V. Krivokhizhina, Opt. Spectrosc. 94, 357 (2003). doi 10.1134/1.1563679ADSCrossRefGoogle Scholar
  18. 18.
    K. V. Berezin, A. M. Likhter, I. T. Shagautdinova, M. L. Chernavina, and V. V. Nechaev, in Problems of Optical Physics and Biophotonics (Novyi Veter, Saratov, 2016), p. 95 [in Russian].Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • K. V. Berezin
    • 1
  • K. N. Dvoretskii
    • 2
  • M. L. Chernavina
    • 1
  • A. V. Novoselova
    • 1
  • V. V. Nechaev
    • 3
  • E. M. Antonova
    • 4
  • I. T. Shagautdinova
    • 4
  • A. M. Likhter
    • 4
  1. 1.Saratov State UniversitySaratovRussia
  2. 2.Saratov State Medical UniversitySaratovRussia
  3. 3.Saratov State Technical UniversitySaratovRussia
  4. 4.Astrakhan State UniversityAstrakhanRussia

Personalised recommendations